铁路信号继电器模态仿真与试验分析
扫描二维码
随时随地手机看文章
引言
在铁路信号系统中,随着列车运行速度的不断提高,铁路信号继电器作为控制和通信的核心元件,对其耐力学特性也有着更高的要求。当继电器受到外界的振动和冲击扰动时,激励会从底座传递到簧片上,簧片发生弯曲改变触点间的接触状态,降低继电器的工作可靠性,甚至使其机械结构损坏。因此,提高继电器的耐力学特性是一个值得深入研究的问题。
本文通过有限元软件,建立了铁路信号继电器的三维有限元模型,通过模态分析模块对继电器的固有频率和振型进行求解计算,从固有频率角度对继电器的抗振性能进行了分析。最后结合振动试验结果,验证仿真计算数据的正确性,可为继电器的抗振性能优化提供一定的参考。
1三维模型的建立
1.1继电器结构分析
本文以某型号的铁路信号继电器为研究对象,如图1所示。
当继电器处于释放状态时,线圈未通电或电压小于额定值,电磁系统不产生吸力或吸力较小,在反力弹簧作用下,触簧系统的8组常闭触点接触,常开触点断开:当继电器处于吸合状态时,线圈产生磁通,电磁系统吸引衔铁向下运动,衔铁带动传动轴驱动推拉杆和簧片实现开断动作。在触簧系统中,簧片既作为通电回路的一部分,又属于控制电路接通和断开的机械构件。在本文中,采用推动力来替代反力弹簧作用,使触头发生接触,进行接触模态分析。
1.2三维有限元模型
三维有限元模型作为仿真过程中进行计算的边界条件之一,其建模的精确度将直接关系到最终仿真结果的准确度,有限元模型的网格剖分结果如图2所示。
网格剖分结束后,为了计算继电器触簧系统的固有频率和模态振型,需要对模型采取分配材料属性、设定边界条件和设置载荷等前处理步骤。
2模态仿真分析
模态分析是研究结构动力学的一种有效方法,是系统辨别方法在工程振动领域中的应用。通过模态分析可以得到系统的固有频率和模态振型等参数。
计算前需在动簧片上施加推动力使触头发生初始接触,并将继电器模型底座固定,得到触簧系统的前两阶固有频率和模态振型,如表1所示。通过图3可知,当铁路信号继电器处于一阶固有频率时,动/静簧片呈弯曲振型,共同进行摆动,振动方向为簧片的运动方向。由图4可知,继电器处于二阶固有频率时,弯曲振动主要由动簧片产生,在固有频率下,外界的振动可造成触点工作可靠性的下降。
3振动试验分析
3.1试验方案设计
本次试验在沈阳铁路信号有限公司可靠性实验室进行,试验遵循《电工电子产品环境试验标准》,继电器由专用夹具牢固安装在振动台上,如图5所示。
3.2固有频率测量
继电器固有频率的测量采用正弦激励法,根据仿真数据,设置激振参数为2g加速度,扫频范围为5~100Hz,循环2次。在扫频振动过程中,由电压传感器实时采集触点间的接触压降,接触压降曲线如图6所示。
从图6中可以看出,在扫频周期中触点发生两次抖断,抖断时振动频率约为65~70Hz。缩小扫频范围为50~70Hz再次试验,最终确定在68Hz时,接触压降曲线波动最大,并且此时监测灯闪烁最为剧烈。通过试验基本确定该铁路信号继电器触簧系统一阶固有频率约为68Hz,依据同样试验步骤,测得二阶固有频率约为340Hz。仿真计算结果与试验结果相比,结果较为接近。
4结语
(1)本文通过有限元方法建立了铁路信号继电器触簧系统模态分析模型,通过对模型进行求解,得到了继电器的前二阶固有频率和振型。此外,通过振动试验,实际测量了继电器的固有频率,验证了该仿真分析方法的准确性,可为继电器和相关开关设备的抗振方法研究提供一定的参考。
(2)模态分析结果表明,触簧系统的共振方向与簧片运动方向一致,易造成触点抖断。在进行抗振性设计时,应设计合理的结构参数,使固有频率转移到外界环境振动频率之外。