当前位置:首页 > 公众号精选 > 电源漫谈
[导读]前述文章,峰值电流模式控制BUCK电路功率级电路计算及仿真 ,其中讨论了BUCK变换器功率级小信号频域分析,BOOST变换器是基本DC/DC变换器中的另一种形式,它可以实现输入电压到输出电压的升压变换,具有比较广泛的应用,对BOOST变换器的控制是设计BOOST电路的核心部分,首先我们需要对功率级电路的小信号传递函数比较了解,才能进行控制环节的设计,本文通过详细计算BOOST变换器功率级的小信号传递函数的特性,进而通过SIMPLIS软件仿真进行验证,作为后续BOOST电路的数字化变换的基础。

前述文章,峰值电流模式控制BUCK电路功率级电路计算及仿真 ,其中讨论了BUCK变换器功率级小信号频域分析,BOOST变换器是基本DC/DC变换器中的另一种形式,它可以实现输入电压到输出电压的升压变换,具有比较广泛的应用,对BOOST变换器的控制是设计BOOST电路的核心部分,首先我们需要对功率级电路的小信号传递函数比较了解,才能进行控制环节的设计,本文通过详细计算BOOST变换器功率级的小信号传递函数的特性,进而通过SIMPLIS软件仿真进行验证,作为后续BOOST电路的数字化变换的基础。


.通过Mathcad计算BOOST变换器功率级的特性

1 BOOST电路典型规格及参数的定义


被分析的BOOST电路的规格基于Microchip的数字电源开发板DPSK3,输入电压9V,输出电压15V,开关频率500kHz,输入电感33uH,输出电容100uF,负载电流为200mA,采用峰值电流控制,典型输入输出电压下的占空比为0.4.

2 关于斜波补偿电压的计算


根据电流采样增益为0.25,及相关参数结合电感的基本公式,我们来计算得出需要的斜坡补偿电压,如图2所示,在上述定义下,补偿电压约为90mV,我们在后续的仿真分析中依据此来叠加斜波补偿电压。

3 峰值电流模式直流增益Kdc计算


BOOST电路的低频增益我们可以通过计算其直流增益来得到,详细计算公式在图3中给出。

5 BOOST电路峰值电流模式功率级传递函数


BOOST电路在峰值电流模式控制中,由于电流环的存在,功率级电路降阶为一阶环节,需要二型补偿器就可以对其进行环路补偿,即对由输出电容和负载构成的主极点ωP进行补偿,注意此处对其通过KD系数进行了修正。除主极点之外,有两个特殊的零点需要注意,一个是由输出电容和其ESR构成的零点ωZ,另一个是所谓的右半平面零点ωR,这一点在前述文章,开关变换器的右半平面零点探讨 ,其中有详细讨论。


6 各个零极点的角频率转化为频率


通过基本变换将前述零极点的角频率转换为实际的频率,方便我们和后续的仿真结果做对照,同时在图6中,我们也对直流增益的结果转化到对数坐标中和后续的仿真结果对照,可知,修正后的主极点为67HzESR零点为159kHz,右半平面零点为130kHz,直流增益为35dB.

7 BOOST电路峰值电流模式功率级增益曲线

8 BOOST电路峰值电流模式功率级相位曲线


78中给出了我们根据上述图5的小信号传递函数对应的BODE图,分别为增益曲线和相位曲线,从中我们可以得到一些重要的量。

9 功率级穿越频率/相位/低频增益的值

10 功率级低频/主极点/右半平面零点处的频域特性


从图9中,我们可以得知,低频增益为35dB,穿越频率为3.8kHz,相位为-89C.同时,在图10中,我们得知在主极点频率处,增益相比低频降低了3dB,相位已经降低45C.在右半平面零点处,增益为-25db,相位为-95C.这里右半平面零点对相位的降低的作用并未得到太多体现,原因是ESR零点和右半平面零点比较接近,因此在相位曲线上可以看出高频段相位基本是持平的。ESR零点和右半平面零点的作用下,高频增益是向上的。


接下来,我们在仿真中对前述计算结果进行验证。


. 通过SIMPLIS仿真峰值电流模式BOOST变换器功率级的特性

11 BOOST峰值电流模式控制的功率级仿真电路


关于SIMPLIS的基础知识,这里我们不再去讨论,有兴趣可以去学习相关的文档,直接给出仿真原理图,如图11所示,这里采用二极管整流方式。

12 BOOST电路稳态运行基本波形


13 相关变量的值及PWM占空比及输出电压测量值


从图13所示的相关变量测量值来看,占空比实际为43%,由于是非同步整流,比理想占空比偏大,而在155mV的电压环给定下,输出电压为我们期望的15V设定值。

14 BOOST电路峰值电流模式功率级小信号BODE


小信号仿真结果显示,低频增益为35db,粗略测量主极点转折频率为61.5Hz,此处相比低频增益降低3db

15 BOOST电路仿真BODE图中关键参数的自动测量结果


从仿真图上的测量结果来看,穿越频率为3.6kHz,主极点转折频率为63Hz,穿越频率处相位为-90C,测量结果和第一部分的计算结果非常一致。


总结,通过上述对BOOST电路功率级电路的小信号频域分析,作为对其环路补偿设计的基础,同时作为环路数字化的基础。



本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭