栅极驱动器的重要性,第一部分
扫描二维码
随时随地手机看文章
碳化硅和氮化镓开关器件是所有电源电路中主要使用的元件。尽管它们在运行速度、高电压、处理电流和低功耗等固有特性方面取得了优异的成绩,但设计人员将所有注意力都集中在此类设备上,而常常忘记将自己的精力投入到相关的驱动器上。
什么是栅极驱动器?
一个好的电源电路不仅由 SiC 和 GaN MOSFET 等静态器件组成。还有栅极驱动器,它是一个位于电子开关之前的独立元件,可确保以最佳方式驱动它们的正确能量。事实上,将方波或矩形波直接发送到元件的栅极端子是不够的。另一方面,驱动信号必须适当定时以发送正确的电位,以确保振荡适合各种组件,尽可能减少寄生元件并消除功率损耗。因此,设计人员必须从最终负载的角度来执行与电路相关的项目,同时分析和创建能够以最佳方式驱动功率元件的优秀栅极驱动器。
非最佳驱动器不仅会导致显着的功率损耗,而且不完美的同步通常会导致电路异常运行,并可能损坏 MOSFET。它们是压控器件,栅极是它们的控制端,与器件电隔离。必须通过专门的驱动器向该端子施加电压才能使MOSFET工作。
出于所有意图和目的,MOSFET 的栅极端子是一个非线性电容器。在栅极电容器上施加电荷会使器件进入“开启”状态,从而允许电流在漏极和源极端子之间流动。相反,该电容器的放电使其处于“关闭”状态。为了使 MOSFET 工作,必须在栅极和源极之间施加高于阈值电压 (VTH) 的电压,这是电容器充电的最小电压,MOSFET 进入导通状态。通常,数字系统(微控制器或 MCU)不足以激活设备,因此在控制逻辑和电源开关之间总是需要一个接口,即驱动程序。
栅极驱动器执行的主要功能之一是电平转换器。但是,栅极电容不能瞬间充电;它需要一段时间才能充满电。在这段时间内,尽管时间很短,但该设备以高电流和电压工作,以热量的形式消耗高功率。不幸的是,这种能量没有被使用并且构成功率损失。因此,从一种状态到另一种状态的转换必须非常快,以最大限度地缩短开关时间,并且为了缩短此时间,有必要促进高电流瞬态以快速为栅极电容器充电。涉及用作电子开关的 SiC MOSFET 的响应,并显示了瞬态期间各个节点上最重要的信号,特别是:
· 顶部的“V(脉冲)”信号代表为系统供电的 PWM 波。它是一个理想的矩形信号,频率为 100 kHz。这是一个完美的信号。
· “V(栅极)”信号代表栅极端子上的实际信号。正如你所看到的,它的趋势是不规则的,因为栅极电容不是线性的,它的电压会在几分钟后达到最大水平,这是电容器充电到最大容量所需的时间。该间隔由时间常数 RC 决定,在这种情况下约为 150 ns。
· “I(负载)”信号代表流过负载和漏极端子的电流。最初,当 MOSFET 打开时它为低电平,然后在 MOSFET 关闭时达到最大电平。这个序列无限重复。请注意,切换不是立即和瞬时的,而是遵循栅极电压的切换。
· “V(漏极)”信号显示了V GS电压的趋势,显然,它与电流反相,始终跟随栅极电容器的充电速度。
· 显示了 MOSFET 消耗的功率 ( V DS × I D ),并且与驱动信号的上升沿和下降沿相对应,它呈现出高有害峰值。这就是功率损耗,这是栅极驱动器必须尽可能减少的一个因素。