基于奇异值分解的机器人视觉图像显著目标自动提取方法研究
扫描二维码
随时随地手机看文章
在当今的机器人视觉应用中,机器人视觉图像显著目标提取是一个关键问题。它旨在从复杂的机器人视觉图像背景中突出显示最重要的信息,以便机器人可以更有效地理解和处理环境[1]。然而,这一问题具有极大的挑战性,因为需要在大量的机器人视觉图像数据中找到具有显著性的目标,这需要复杂的计算和准确的算法。
在过去几十年中,许多研究者致力于解决这个问题,提出了许多方法,包括基于色彩的显著性检测、基于频域的显著性检测、基于机器学习的显著性检测等等[2]。这些方法在一定程度上取得了成功,但仍存在一些问题,如对复杂背景的鲁棒性、对不同光照条件的适应性以及对计算资源的需求等。
近年来,基于奇异值分解(SVD)的方法在机器人视觉图像处理中受到了广泛关注。SVD是一种强大的矩阵分析工具,它可以提供机器人视觉图像的重要统计信息,并且对机器人视觉图像的旋转、缩放和错位等变换具有不变性[3]。因此,它在机器人视觉图像识别、机器人视觉图像恢复和机器人视觉图像压缩等领域应用广泛。然而,将SVD应用于机器人视觉图像显著目标提取的研究还相对较少。
本文将深入研究基于SVD的机器人视觉图像显著目标自动提取方法,希望通过这种方法,能够提高机器人在处理大量机器人视觉图像数据时的效率和准确性,从而推动机器人在实际生活中的应用。
1基于奇异值分解的机器人视觉图像显著目标自动提取方法设计
1.1机器人视觉图像超像素分割
首先,利用简单的线性分类迭代算法对机器人视觉图像进行分割,将其划分成若干个超像素,以形成机器人视觉图像的超像素集合[4]。以下是超像素分割的具体流程:
为了实现初步的机器人视觉图像分组核心,需要根据特定分类的数目将种子点分散在机器人视觉图像中。如果输入机器人视觉图像包含N个像素并且被划分为K个超像素,那么每个超像素将包含的像素数量为:
如果Q是一个超像素大小,那么计算邻近节点实际距离S的公式为:
利用像素梯度值计算对应每个单元最近区域,获得最小值位置。为避免机器人视觉图像中的节点不存在于目标边缘并影响分割结果,需要在该位置动态配置节点[5]。
在周围划分节点25×25的范围存储像素。在每个像素中,计算该像素所在位置与相邻种子节点之间的距离。然后,根据这些距离将像素划分为相应的种子节点。计算如下:
在迭代过程中,如果将超像素重新划分成几个超像素,并且这些超像素的大小过小,那么需要对这些超像素进行再次合并[6]。需要持续更新那些数量不足的超像素集,直到形成一组类似且包含相同数量N个超像素的正确、最终的超像素组合。
1.2基于奇异值分解的机器人视觉图像显著性处理
在完成机器人视觉图像的超像素分割后,需要采取措施来减少机器人视觉图像中的有效不平衡。奇异值分解方法是线性代数中一种重要的矩阵分解方法,可以用于平衡机器人视觉图像的有效性,即平衡机器人视觉图像中具有相同有效值的相应有效超像素值。以下是基于奇异值分解实现机器人视觉图像显著性均衡的具体步骤:
机器人视觉图像的超像素分类采用了奇异值分解算法,将机器人视觉图像分割成k类超像素。假设k包含M个超像素,对于每个超像素i,计算其在k组中的剩余超像素si/(k)。具体计算过程如下:
在这项研究中,开发了一个实质性的调和过程,在背景推断方法中使用奇异值分解来揭示机器人视觉图像。利用奇异值分解对机器人视觉图像进行显著性平滑处理,具体计算过程如下:
为了避免实质上干扰机器人视觉图像,利用奇异值分解对机器人视觉图像进行显著性平滑处理的过程中,选择x和y方向上的中心值的坐标作为高斯模型的左右中心坐标的二维,对机器人视觉图像进行显著性处理。
1.3显著性目标自动提取
在进一步评估信息的基础上,通过机器人视觉图像区域层次的分类,实现显著性目标自动提取。
具体步骤如下:
步骤1,通过结合深度图和RGB机器人视觉图像信息,执行平滑降噪过程。
步骤2,将点云数据转换为深度地图。
步骤3,对云区域中的场景平面进行分割,并提取主平面位置。
步骤4,对平面进行分类。
对于机器人视觉图像分割对区域层次组采取的措施如下:
步骤1,处理深度机器人视觉图像和RGB机器人视觉图像。
步骤2,分割深度机器人视觉图像和RGB机器人视觉图像,获得分割的超像素。
步骤3,将层次区域集成为分段的超像素。
基于奇异值分解以有效分割机器人视觉图像目标的具体措施如下:
步骤1,使用奇异值分解算法,并将像素指定为框内带有背景标签的像素。
步骤2,在背景像素中使用奇异值分解算法,在Z类像素的相应样本集的基础上计算包含Z背景和背景分量的6个维度。
步骤3,更新各像素进行最大概率分配。
步骤4,为边界框中的所有像素设置适当的框架,并实现最小机器人视觉图像分割。
步骤5,重复步骤3、步骤4,直到收敛。
通过以上措施获得的分割后的机器人视觉图像即为显著性目标自动提取结果。
2实验论证
为检验本文设计方法的实际应用效果,将本文方法与传统方法1[3]和传统方法2[4]进行比较,设计如下对比实验。
2.1对比实验
实验数据来自五个公共机器人视觉图像数据库,具体如表1所示。
将上述实验数据随机分为三组,分别用A1、A2、A3表示,将本文设计方法用于实验数据中,获得显著性目标自动提取结果,并将提取结果与实际结果进行拟合,提取过程中机器人视觉图像分辨率范围为45.5~65.5 PPI。对于拟合值F的计算过程如下:
为增强本实验结果的可靠性和对比性,采用传统方法1和传统方法2进行对比实验。在机器人视觉图像分辨率为45.5~65.5 PPI的范围内,获取了这三种方法的拟合度数据作为对比实验数据,并将结果整理成如表2所示的表格。
2.2实验结果分析
从表2中可以看出,本文方法机器人视觉图像显著目标自动提取多项式函数拟合计算结果与实际结果具有较高的拟合度,并且拟合度在0.998以上,高于传统方法1和传统方法2的拟合度,在提取机器人视觉图像显著目标方面效果较好,具有优势。
3结束语
本文对基于奇异值分解的机器人视觉图像显著目标自动提取方法进行了深入研究。通过介绍SVD的基本原理及其在机器人视觉图像处理中的应用,展示了该方法在提取机器人视觉图像显著目标方面的优势。通过对实验结果的分析,验证了该方法目标提取的拟合度较高。