当前位置:首页 > 厂商动态 > Achronix半导体
[导读]本文根据完整的基准测试,将Achronix Semiconductor公司推出的Speedster7t FPGA与GPU解决方案进行比较,在运行同一个Llama2 70B参数模型时,该项基于FPGA的解决方案实现了超越性的LLM推理处理。

采用 FPGA 器件来加速LLM 性能,在运行 Llama2 70B 参数模型时,Speedster7t FPGA 如何与 GPU 解决方案相媲美?证据是令人信服的——Achronix Speedster7t FPGA通过提供计算能力、内存带宽和卓越能效的最佳组合,在处理大型语言模型(LLM)方面表现出色,这是当今LLM复杂需求的基本要求。

像 Llama2 这样的 LLM 的快速发展正在为自然语言处理(NLP)开辟一条新路线,有望提供比以往任何时候都更像人类的交互和理解。这些复杂的 LLM 是创新的催化剂,推动了对先进硬件解决方案的需求,以满足其密集处理需求。

我们的基准测试突出了 Speedster7t 系列处理 Llama2 70B 模型复杂性的能力,重点关注 FPGA 和 LLM 性能。这些测试(可根据要求提供结果)显示了Achronix FPGA对于希望将LLM的强大功能用于其NLP应用程序的开发人员和企业的潜力。这些基准测试展示了 Speedster7t FPGA 如何超越市场,提供无与伦比的性能,同时降低运营成本和环境影响。

Llama2 70B LLM 运行在 Speedster7t FPGA 上

2023 年 7 月,Microsoft 和 Meta 推出了他们的开源 LLM,Llama2 开创了 AI 驱动语言处理的新先例。Llama2 采用多种配置设计,以满足各种计算需求,包括 700 亿、130 亿和 700 亿个参数,使其处于 LLM 创新的最前沿。Achronix和我们的合作伙伴 Myrtle.ai 对700亿参数的Llama2模型进行了深入的基准分析,展示了使用Speedster7t FPGA进行LLM加速的优势。

基准测试结果:Speedster7t FPGA 与业界领先的 GPU 对比

我们在 Speedster7t FPGA 上测试了 Llama2 70B 模型的推理性能,并将其与领先的 GPU 进行了比较。该基准测试是通过对输入、输出序列长度 (1,128) 和批处理大小 =1 进行建模来完成的。结果表明,Speedster7t AC7t1500在LLM处理中的有效性。

FPGA 成本基于由 Speedster7t FPGA 提供支持的 VectorPath 加速卡的标价。同样,我们在此分析中使用了可比GPU卡的标价。使用这些成本信息和每秒产生的输出令牌数量,我们计算出基于 FPGA 的解决方案的 $/token 提高了 200%。除了成本优势外,在比较 FPGA 和 GPU 卡的相对功耗时,我们观察到与基于 GPU 的解决方案相比,产生的 kWh/token 提高了 200%。这些优势表明 FPGA 如何成为一种经济且能效高效的 LLM 解决方案。

面向 LLM 的 FPGA:Speedster7t 的优势

Achronix Speedster7t系列FPGA旨在优化LLM操作,平衡LLM硬件的关键要求,包括:

高性能计算 – 具有高性能计算能力的尖端硬件对于管理 LLM 推理核心的复杂矩阵计算至关重要。

高带宽内存 – 高效的 LLM 推理依赖于高带宽内存,通过模型的网络参数快速馈送数据,而不会出现瓶颈。

扩展和适应能力 – 现代 LLM 推理需要能够随着模型规模的增长而扩展并灵活适应 LLM 架构的持续进步的硬件。

高能效处理 – 可持续的 LLM 推理需要硬件能够最大限度地提高计算输出,同时最大限度地降低能耗,从而降低运营成本和环境影响。

Speedster7t FPGA 提供以下功能,以应对实施现代 LLM 处理解决方案的挑战:

计算性能– 通过其灵活的机器学习处理器 (MLP) 模块支持复杂的 LLM 任务。

高 GDDR6 DRAM 带宽 – 确保以 4 Tbps 的内存带宽快速处理大型 LLM 数据集。

大量的 GDDR6 DRAM 容量 – 可容纳 Llama2 等扩展的 LLM,每个 FPGA 的容量为 32 GB。

用于 LLM 的集成 SRAM – 提供低延迟、高带宽的存储,具有 190 Mb 的 SRAM,非常适合存储激活和模型权重。

多种本机数字格式 – 适应 LLM 需求,支持块浮点 (BFP)、FP16、bfloat16 等。

高效的片上数据传输 – 2D NoC 超过 20 Tbps,简化片上数据流量。

扩展横向扩展带宽 – 支持多达32个112 Gbps SerDes 满足 LLM 需求,增强连接性。

自适应逻辑级可编程性 – 使用 690K 6 输入 LUT 为 LLM 的快速发展做好准备。

针对 LLM 推理优化的 FPGA

在快速变化的人工智能和自然语言处理领域,使用 FPGA 而不是 GPU 来加速 LLM 是一个相当新的想法。该基准测试展示了设计人员如何从使用Achronix的FPGA技术中受益。Achronix Speedster7t系列FPGA是这一变化的关键技术,在高性能、高带宽存储器、易于扩展和电源效率之间实现了出色的平衡。

基于详细的基准分析,将 Speedster7t FPGA 与领先的 GPU 在处理 Llama2 70B 模型方面的能力进行比较,结果表明 Speedster7t FPGA 能够提供高水平的性能,同时大大降低运营成本和环境影响,突出了它在未来 LLM 创建和使用中的重要作用。

如果希望进一步了解如何使用FPGA器件来加速您的LLM程序,以及 FPGA 加速 LLM 解决方案的未来发展机遇,请联系Achronix,获取详细的基准测试结果,并帮助您确定Achronix FPGA技术如何加速您的LLM设计。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭