当前位置:首页 > 汽车电子 > 汽车电子
[导读]每年,汽车制造商都会为汽车配备越来越多的传感器和功能,从而增加汽车中的电子内容并增加其电力需求。随着功率水平的提高,曾经依赖低压差线性稳压器 (LDO) 的工程师现在可能需要使用降压拓扑来满足目标效率。

每年,汽车制造商都会为汽车配备越来越多的传感器和功能,从而增加汽车中的电子内容并增加其电力需求。随着功率水平的提高,曾经依赖低压差线性稳压器 (LDO) 的工程师现在可能需要使用降压拓扑来满足目标效率。

降压转换器可以以更高的效率提供比典型 LDO 更多的功率,但有一个缺点 - 其开关特性会产生电磁干扰 (EMI),这对于汽车应用来说可能是一个严重问题。幸运的是,工程师可以使用许多技巧和工具来降低 EMI,包括优化电路板布局、利用 IC 功能以及添加电路。

DC/DC 转换器会因输入纹波、与附近电路的电和磁耦合以及电磁辐射而产生 EMI。 EMI 会干扰 AM/FM 无线电接收器和其他敏感设备,例如主机或高级驾驶员辅助系统 (ADAS) 传感器。严重的 EMI 可能会在收音机和主机音频中产生静态噪声或其他类型的噪声,干扰 ADAS 传感器,并降低其他系统的性能。

为了防止这种严重的性能下降,工程师需要设计符合官方标准的系统,例如国际无线电干扰专业委员会 (CISPR) 25 5 级。由于不良布局可能导致任何设备无法达到标准机构设定的 EMI 限制,因此重要的是在电路板布局期间遵循良好的布局优化实践。降压转换器最重要的做法是:

· 减少电压快速变化(高 dv/dt)的节点表面积,以及

· 减小快速变化电流(高 di/dt)的电流环路面积。

这两条基本规则将决定工程师放置某些组件的位置,以最大限度地减少 EMI。

不幸的是,即使是最优化的 PCB 布局也无法避免所有与 EMI 相关的问题。此外,由于电路板尺寸和形状或时间限制,通常无法像我们希望的那样优化 EMI 布局。例如,非常紧凑的布局可能需要您将功率电感器放置在电路板的底部,或者将输入电容器放置在距离 IC 稍远的位置,以尽量减少 EMI。

这些和其他布局限制可能会导致 EMI,从而降低系统性能。即使有经验和细心,董事会也可能需要进一步优化。这些额外的董事会修订需要时间和金钱。那么,除了优化布局以最大限度地降低应用的 EMI 之外,您还可以做什么呢?

克服电路板布局限制

如果无法优化布局以获得最佳 EMI,某些 DC/DC 转换器会在器件级别提供许多封装和功能改进,以帮助最大限度地降低 EMI 并更容易满足 CISPR 25 5 类限制。这些功能使电路板设计与布局更加无关;换句话说,它们可以帮助弥补布局的缺陷。

例如,扩频功能可扩展谐波能量以降低峰值和平均 EMI 测量的最大值。它通过抖动开关频率(加减一定百分比)来扩展频谱密度来实现这一点。例如,扩展 ±2% 会看到 25次及更高次谐波上的谐波能量完全混合或重叠,而不是固定频率,这将保持在基频上间隔的谐波尖峰。能量在较高频率中均匀分布,从而产生较低的测量值包络,需要较少的滤波和布局优化,从而节省时间和金钱。

转换速率控制是另一个有助于提高 EMI 性能的功能。 EMI 的主要来源是开关环。开关振铃是由高侧 FET 快速导通引起的,它快速从输入电容拉电流,导致输入寄生环路电感和寄生电容谐振而产生数百兆赫的振铃低侧 FET 的。减慢上升时间可以减慢即时电流消耗,从而减少振铃和 EMI。可以通过添加与启动电容器串联的电阻器(大约几欧姆)来减慢上升时间,并且某些器件具有专用的启动电阻器引脚。这里需要权衡:减慢 FET 的转换可以最大限度地降低 EMI,但也会增加开关损耗,从而降低效率。

还有一些封装级功能有助于抑制 EMI。 TI 的 HotRod 封装就是一个例子,它消除了内部键合线,如图1所示。不连续电流会导致开关节点产生数百兆赫兹的振铃,从而产生耦合和辐射,从而产生 EMI。去除输入电容器不连续电流的高 di/dt 环路路径中的键合线可降低环路电感。这反过来又减少了振铃中的能量,从而降低了 EMI。LM61460-Q1和LM53635-Q1等器件采用 HotRod 封装。

图 1通过该横截面视图,工程师可以比较标准引线键合四方扁平无引线 (QFN) 封装和 TI 的 HotRod QFN。

其他封装级功能包括优化的引脚排列。器件可以通过组织引脚布局来提高 EMI 性能,从而使输入电容器等关键路径保持尽可能小。设备通常将 VIN 和 GND(或 PGND)引脚彼此相邻放置,以便为电容器的连接提供优化的位置。

更进一步的是对称引脚排列。将 VIN/PGND 对称地放置在封装的两侧,可以使输入环路磁场保持独立,从而进一步降低 EMI。许多 DC/DC 降压转换器(例如LMR33630、LMR36015、LM61460和LMQ61460-Q1)都具有对称的 VIN/PGND 引脚对(图 2b)。

集成输入电容器

下一代 EMI 优化封装使用集成电容器来进一步降低输入寄生电感。 LMQ61460-Q1 在两侧均包含两个集成输入旁路电容器,每个 VIN/PGND 对各一个。这些电容器是横跨右上和右下引脚对(VIN 和 PGND)的黑色矩形,如图 2a所示。图 2b 显示了器件引脚排列以供参考。

最大限度地减少高频 EMI 尤为重要,因为汽车应用中常见的较高输入电压和较高输出电流可能会加剧该领域的问题。

图 2 X 射线图像显示了带有集成电容器 (a) 的 LMQ61460-Q1 降压静音转换器,您可以将其与引脚排列参考 (b) 进行比较。

虽然 EMI 确实给汽车应用带来了挑战,但如果设计工程师遇到电路板布局限制,他们也并非没有选择。有很多方法可以应对这一挑战,从战略器件引脚排列到低电感封装、转换速率控制、扩频和集成电容器等集成功能。

这些功能使工程师能够放松严格的 EMI 布局优化的要求,以换取全面的布局,从而为更好的热性能和/或更小的解决方案尺寸提供更多的优化空间。这些功能可改进您的设计,以自信地满足标准机构设定的 EMI 限制。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭