为什么动力总成集成有利于混合动力汽车/电动汽车?
扫描二维码
随时随地手机看文章
用更少的器件实现更多的汽车应用,既能减轻车重、降低成本,又能提高可靠性。这是集成电动汽车(EV)和混合动力汽车(HEV)设计背后的理念。
总成集成有利于混合动力汽车/电动汽车,主要体现在以下几个方面:
提高功率密度:通过集成动力总成系统,可以减少器件数量,提高系统的功率密度,从而提升电动汽车的整体性能12。
优化成本:集成化设计可以减少器件数量和组装步骤,降低制造成本,提高经济效益12。
提高可靠性:集成化设计减少了组件间的接口和连接,降低了故障率,提高了系统的整体可靠性12。
简化设计和组装:集成化设计支持标准化和模块化,简化了设计和组装过程,提高了生产效率12。
轻量化:集成化设计减少了系统的重量,有助于实现汽车的轻量化,从而提高燃油经济性和行驶里程34。
具体应用案例和未来发展趋势
比亚迪的三合一动力总成:比亚迪的电机、电控、变速器三合一驱动总成系统通过集成化设计,实现了体积小、重量轻、功率密度高的优势,显著提升了电驱总成的效率和成本效益4。
宽带隙半导体器件:碳化硅(SiC)和氮化镓(GaN)等新材料的应用,进一步提高了电动汽车的效率和功率密度,推动了动力总成集成技术的发展5。
什么是集成动力总成?
集成动力总成旨在将车载充电器(OBC)、高压直流/直流(HV DCDC)转换器、逆变器和配电单元(PDU)等终端设备结合到一起。机械、控制或动力总成级别均可进行集成,如图1所示。
图1:电动汽车典型架构概述
为什么动力总成集成有利于混合动力汽车/电动汽车?
集成动力总成终端设备组件能够实现以下优势:
· 提高功率密度。
· 提高可靠性。
· 优化成本。
· 简化设计和组装,并支持标准化和模块化。
市场应用现状
实现集成动力总成的方法有很多。图2以车载充电器和高压直流/直流转换器集成为例,简要介绍了用于在结合动力总成、控制电路和机械组件时实现高功率密度的四种常见方法。它们分别是:
· 方法1:形成独立的系统。这种方法已不如几年前流行。
· 方法2:可分为两个步骤:
· 直流/直流转换器和车载充电器共享机械外壳,但拥有各自独立的冷却系统。
· 同时共享外壳和冷却系统(最常选用的方法)。
· 方法3:进行控制级集成。这种方法正在演变为第4种方法。
· 方法4:相比于其他三种方法,此方法由于减少了电源电路中的电源开关和磁性元件,所以成本优势更大,但它的控制算法也更复杂。
图2:车载充电器和直流/直流转换器集成的四种常见方法
表1概括了目前市场上的集成架构:
可降低电磁干扰(EMI)的高压三合一集成:车载充电器、高压直流/直流转换器和配电单元的集成(方法3)集成架构:车载充电器和高压直流/直流转换器的集成(方法4)43kW充电器设计:车载充电器、牵引逆变器和牵引电机的集成(方法4)
· 6.6kW车载充电器
· 2.2kW直流/直流转换器
· 配电单元
*第三方数据报告显示,这类设计能够使体积和重量减少大概40%,并且使功率密度提高大概40%· 6.6kW车载充电器
· 1.4kW直流/直流转换器
· 磁集成
· 共享电源开关
· 共享控制单元
(一个微控制器[MCU]控制的功率因数校正级,一个微控制器控制的直流/直流级,以及一个高压直流/直流转换器)·交流充电功率高达43kW
·共享电源开关
·共享电机绕组
表1:集成动力总成的三种成功实现
动力总成集成方框图
图3为一个动力总成的方框图,该动力总成实现了电源开关共享和磁集成的架构。
图3:集成架构中的电源开关和磁性组件共享
如图3所示,车载充电器和高压直流/直流转换器都连接至高压电池,因此车载充电器和高压直流/直流转换器的全桥额定电压相同。这样,便可以通过全桥使得车载充电器和高压直流/直流转换器实现电源开关共享。
此外,将图3所示的两个变压器集成在一起还可以实现磁集成。这是因为它们在高压侧的额定电压相同,能够最终形成三端变压器。
性能提升
图4展示了如何通过内置降压转换器来帮助提升低压输出的性能。
图4:提升低压输出的性能
当这个集成拓扑在高压电池充电条件下工作时,高压输出可得到精确控制。但是,由于变压器的两个端子耦合在一起,所以低压输出的性能会受到限制。有一个简单的方法可以提升低压输出性能,那就是添加一个内置降压转换器。但这样做的代价就是会导致成本增加。
共享组件
像车载充电器和高压直流/直流转换器集成一样,车载充电器中的功率因数校正级和三个半桥的额定电压非常接近。这样,便可以通过由两个终端设备组件共享的三个半桥来实现电源开关共享,如图5所示。这可以降低成本并提高功率密度。
图5:动力总成集成设计中的组件共享
由于一个电机一般有三个绕组,因此也可以将这些绕组用作车载充电器中的功率因数校正电感器,借此实现磁集成。这也有助于降低设计成本和提高功率密度。
结束语
从低级别的机械集成到高级别的电子集成,集成的发展仍在继续。随着集成级别的提高,系统的复杂性也将增加。但是,每种架构变体都会带来不同的设计挑战,包括:
· 为进一步优化性能,必须精心设计磁集成。
· 采用集成系统时,控制算法会更加复杂。
· 设计高效的冷却系统,以适应更小型系统的散热需求。
灵活性是动力总成集成的关键。众多方法任您选择,您可以任意地探索各种级别的集成设计。
随着越来越多的混合动力汽车 (HEV) 和电动汽车 (EV) 首次亮相,汽车制造商正在提高车辆动力系统的电气化程度。受全球限制二氧化碳排放法规的推动,销量每年以 20% 至 25% 的速度增长 [1],预计到 2030 年将占汽车总销量的 20% 至 25%[2]。此外,随着消费者对混合动力汽车的接受程度的提高,也带来了对性能更好、行驶里程更长的节能、坚固和紧凑型系统的更大需求。
该领域的主要顾虑之一是如何使混合动力汽车/电动汽车更实惠,促进大众市场的采用并解决汽车制造商当前盈利能力不足的问题。如今,小到中型电动汽车的平均价格比同等级别的内燃机汽车高出约 12,000 美元 [3]。
起初,人们认为电池成本是造成价格差异的唯一原因。的确,电池成本在未来可能会大幅下降。然而,详细的商业模式最近表明,其他选项也可以降低成本 [3] 并缩短原始设备制造商(OEM) 使混合动力汽车/电动汽车销售实现盈利的时间。一种选择是按成本设计 (DTC),它专注于动力总成集成,即电力电子组件放置得更紧密,减少组件数量,并将它们集成到更少的盒子中。
在本白皮书中,我会介绍将 DTC 应用于电力电子产品如何使OEM 能够实现大众市场的采用。首先,我将解释为什么电力电子技术的进步能够在努力降低动力总成系统的 DTC 的同时减轻消费者的“里程焦虑”,然后介绍旨在采用 DTC 的系统级集成式动力总成解决方案,并特别着重介绍优化半导体 (IC) 和功率器件的内容。
解决里程焦虑
在购买混合动力汽车和电动汽车时,里程焦虑一直是消费者最关心的问题。2020 年,市场上预计将发布几款里程超过 200英里 [4] 的电动汽车。即使在不同的 OEM 厂商中,这些电动汽车的共同之处在于,它们都采用了全新的动力总成平台设计,优化了电池堆叠和封装以实现高续航里程。更高的电池组堆叠转化为更高的电压和更大的马力。
现代电动汽车的电池电压通常约为 400V,但要获得更大的马力,则需要将电池电压提高至 800V,尤其是在高端电动汽车中。更高的电压可将相同的电流转换为更大的马力。电池堆叠和封装的优化可实现紧凑的空间和更低的 DTC。
此外,在同样的功率下,更高的电压可提高效率,因为不用使用大电流,从而可降低热耗散。更小的电缆直径和更低的重量反过来又降低了 DTC。