汽车电力载波总线系统的应用设计
扫描二维码
随时随地手机看文章
目前,现行的汽车总线标准很多,其中使用比较广泛的有CAN总线、J1850等。这些总线都要采用专门的数据线束,且汽车的ECU单元对数据传输的要求不一致,需要在汽车内同时布置几个不同的数据网络。另外,这些数据总线的实现又需要布置专用的数据通信线束,这样增加了汽车内的线束、制造成本和维护难度,给汽车内的数据传输带来不稳定的因素。本文介绍一种新的汽车总线数据传输方式——汽车电力载波总线数据通信技术,该方式在不增加汽车内线束的基础上可实现汽车内各ECU模块之间的数据传输和共享。
1 系统总线通信信道模型分析
与低压电网载波通信系统一样,汽车电力线载波系统的负载也是复杂和时变的。各种类型的电器有时接通,有时断开,使得导线的阻抗特性具有很大的波动性,系统的传递函数随负载的变化随时发生改变,是一个时变系统。图1所示的时变通信信道模型,可以用来表述汽车电力线载波总线系统。图中,除了噪声干扰被表示为加性的随机干扰过程外,系统中其他的部分都以相应的频率响应函数表示。通信系统中的传递函数以及噪声模型可以通过测量得到,也可以通过理论分析得到。这个系统模型比较全面地概括了通信系统设计时所必须考虑的重要特性。
图2 网络分析仪结构框图 对于汽车电力线载波通信信道,其频率响应是一个缓慢变化的随机过程。这个随机过程可以看成是一个方差为σ2的白噪声经过一个因果稳定滤波器的输出。正确地选择这个滤波器的系数,就能把这个随机过程用有限的参数表示出来。把已经获得的数据送入计算机处理、分析方差的变化开始变缓,可以确定系统频率响应,用3个系数和1个白噪声的方差表示为:按此在新窗口浏览图片。根据模型系数的统计特性认为,通信信道的频率响应应该是白噪声随机过程经过AR模型系数所构成的滤波器后的输出,可以通过计算机编制程序来产生信道的频率响应。这里假定系数都是独立的高斯随机变量,仿真结果如图3所示。
本文在大量实验测量的基础上,在500 kHz~10 MHz频带上对汽车电力线载波通信信道的传输特性进行了研究,并用随机信号处理方法建立了信道幅频特性的3阶自回归模型,得到以下结论: ① 汽车电力线载波通信信道不存在通常低压电力线载波通信信道都会遇到的多孔径传输的问题。 2 系统设计
根据系统总线通信信道模型分析,汽车电力载波总线采用汽车载波通信标准和协议;同时,结合汽车内各电器对数据传输速率要求的实际情况,组建不同数据速率的汽车线束载波通信网络。高速载波通信网络将汽车内需要高数据传输速率 的模块连接在一起,而对速率要求不高的电器模块则使用低速通信网络。这样,汽车内的所有电器就可以通过很少的几根电力线束分别连接在一起,组成几个子系统。这些子系统之间通过网间连接器(网关)实现信息共享,达到汽车各电器模块的协同动作,实现汽车智能控制。图4是汽车载波通信的网络拓扑结构原理框图。在这种拓扑结构的汽车载波通信系统中,各电器模块与载波通信模块之间的连接采用新的汽车载波通信总线标准。 本设计中的汽车载波通信系统采用主从结构,整体的网络结构呈树状分布。系统中包括一个主控制模块和多个从控制模块。从网络拓扑结构的角度来看,整个通信系统就是由主控制模块、汽车电力线束以及从控制模块组成,在系统中汽车电力线束同时也起到了通信信道的作用。图5显示了连接在汽车内载波通信系统中的主控制模块与电动门窗及电动椅等负载的连接情况。控制信息通过汽车电力线束,在各个控制模块之间传输。
采用载波通信技术的智能汽车照明控制系统包括主控制模块及从控制模块。图6为系统控制单元连接框图。从图中可以看出,除了外部接口外,主控模块与从控模块之间没有太大的差别。它们都包括有CPU模块、调制解调模块、耦合模块。这些都是进行载波通信所必需的单元。下面将详细论述这几部分模块的具体实现。 图6 系统控制单元连接框图 各个控制单元系统采用了PIC系列单片机,主控制单元采用的是PIC16F877,而从控制单元采用的则是PIC16F873。 PIC(Peripheral InteRFace Controller,外围接口控制器),是由美国Microchip公司推出的单片机系列。 3.1 主控制单元的具体实现 下面以主控制单元中CPU模块的具体应用为主,介绍系统中CPU的具体实现。图7所示为主控制单元CPU模块的控制连接电路。
主控制模块没有具体的负载控制要求。根据功能的不同,它可以分为内部系统及外部系统两部分。外部系统方面,主要起与系统外部进行信息交流的作用,包括人机接口及CAN总线模块。通过该部分,系统可以接收由外部发送过来的命令,同时也能够将本系统的各个单元模块状态信息发送给外部系统。内部系统方面,主控制单元的任务是将外部来的命令转化为具体的控制内容,发送给系统内的各个从控制单元,以及接收各个从控制单元发送上来的状态信息,并对整个系统的运行起管理控制作用。
FSK信号的解调是通过一个锁相环集成芯片来实现的。该锁相环使得输入信号波形保持频率锁定。当输入信号波形的频率改变时,锁相环将产生一个错误标志信号,促使锁相环改变锁定频率,以重新匹配输入信号的频率。通过仔细地调节芯片电路,使得锁定频率与逻辑“1”及逻辑“0”两个频率的中间频率相一致。具体的解调电路如图9所示。由图可见,系统是通过芯片RC2211N来进行FSK解调操作的。根据上面的分析,该芯片是基于一个锁相环拓扑原理工作的。电路中重要的外部元件包括引脚8及引脚13的外接元件。这些元件的参数设置了锁相环的中间频率、衰减系数及增益。根据系统的设计,信号经过FSK调制后,将被发送到跳频扩频调制模块以对信号进行跳频扩频调制。
3.3 跳频扩频信号调制、解调的实现 结合汽车内的电磁环境及汽车电力线束载波信道特性,系统采用了跳频扩频调制方式。跳频扩频系统不论慢跳还是快跳,一般输入调制信号是已调制数字信号s(t),其载波一般采用中频波段,然后进入跳频系统的“变频器”(乘法器),与受控于PN码的“频率合成器”所提供的随机改变其频率值的另一射频,作为载波与之相“混频”后,由带通滤波器输出发送信号,构成扩频调制系统发送模块。而在接收端,进行与此相反的一个过程。信号调制是用来提高在 强干扰条件下基本通信系统的性能的,使得系统能够识别并且避免有强干扰存在的频段。
跳频扩频信号调制是使用集成芯片来实现的,如图10所示。具体的流程:压控芯片MAX8038提供的高频扩频载波信号被发送到集成芯片 MC1496,由该芯片完成载波信号与FSK调制信号的幅度调制操作。芯片MC1496是一种乘法器,它工作在抑制载波幅值调制模式。在抑制载波幅度调制模式下,载波频率没有被传输,这样就能够得到更大的传输效率。高频载波信号产生芯片 MAX8038是一种压控信号发生器,信号的频率为10 kHz~ 20 MHz。跳频扩频信号的解调原理与调制过程是相似的,调制后的高频扩频信号被发送到MC 14%乘法器芯片,与前面过程同频的载波信号相乘进行幅度解调操作,就可以得到跳频扩频信号的解调信号。 为了对系统的性能进行评估,实验测试了系统在不同的数据传输速率下的各个控制端口接收、发送的数据传输误码率情况。 实验测试是以在某个固定数据传输速率下,先测试主控制单元,后测试每个从控制单元的顺序进行的。实验可 以通过编程设置相应按钮的功能来实现测试的要求,比如,如果需要测试主控制单元发送信号时,各从控制单元接收信号的误码率,可以直接按下事先设置好的按钮,使系统中的主控制单元进行发送数据状态,直到该控制按钮被再次按下时为止。实验发送的数据被设置为从00H到FFH的循环,这样在接收端通过接收到的数据值与事先设置好的值比较,就可以知道数据发送的正确与否。如果接收到的数据与事先设置的数据不相等,则错误次数统计数将加1。在实验中,设置每次发送的字节数为5 000次,这样能够较准确地评估系统的性能,排除一些偶然的因素。具体的实验数据如表1所列。 表1 实验数据
|