当前位置:首页 > 汽车电子 > 汽车电子
[导读]议题内容: 电动车无刷电机控制器短路的工作模型 控制器在短路时MOSFET的工作状态 计算MOSFET瞬态温升的计算公式 设定短路保护时间的原则 解决方案: 温升公式:Tj = Tc + P × Rth(jc) 根据单脉冲的热阻系

议题内容:

电动车无刷电机控制器短路的工作模型
控制器在短路时MOSFET的工作状态
计算MOSFET瞬态温升的计算公式
设定短路保护时间的原则
解决方案:

温升公式:Tj = Tc + P × Rth(jc)
根据单脉冲的热阻系数确定允许的短路时间
工作温度越高短路保护时间就应该越短
1 短路模型及分析

短路模型如图1所示,其中仅画出了功率输出级的A、B两相(共三相)。Q1和Q3为A相MOSFET,Q2和Q4为B相MOSFET,所有功率MOSFET均为AOT430。L1为电机线圈,Rs为电流检测电阻。

当控制器工作时,如电机短路,则会形成如图1中所示的流经Q2,Q3的短路电流,其电流值很大,达几百安培,MOSFET的瞬态温升很大,这种情况下应及时保护,否则会使MOSFET结点温度过高而使MOSFET损坏。短路时Q3电压和电流波形如图2所示。图2a中的MOSFET能承受45us的大电流短路,而图2b中的MOSFET不能承受45us的大电流短路,当脉冲45us关断后,Vds回升,由于温度过高,仅经过10us的时间MOSFET便短路,Vds迅速下降,短路电流迅速上升。由图2我们可以看出短路时峰值电流达500A,这是由于短路时MOSFET直接将电源正负极短路,回路阻抗是导线,PCB走线及MOSFET的Rds(on)之和,其数值很小,一般为几十毫欧至几百毫欧。

2 计算合理的保护时间

在实际应用中,不同设计的控制器,其回路电感和电阻存在一定的差别以及短路时的电源电压不同,导致控制器三相输出线短路时的短路电流各不相同,所以设计者应跟据自己的实际电路和使用条件设计合理的保护时间。
短路保护时间计算步骤:

2.1 计算MOSFET短路时允许的瞬态温升

因为控制器有可能是在正常工作时突然短路,所以我们的设计应是基于正常工作时的温度来计算允许的瞬态温升。MOSFET的结点温度可由下式计算:

Tj = Tc + P × Rth(jc)
其中:

Tc:MOSFET表面温度
Tj:MOSFET结点温度
Rth(jc):结点至表面的热阻,可从元器件Date sheet中查得。
 
 
理论上MOSFET的结点温度不能超过175℃,所以电机相线短路时MOSFET允许的温升为:Trising = Tjmax - Tj = 175-109 = 66℃。

2.2 根据瞬态温升和单脉冲功率计算允许的单脉冲时的热阻

由图2可知,短路时MOSFET耗散的功率约为:

P = Vds × I = 25 × 400 = 10000W
脉冲的功率也可以通过将图二测得波形存为EXCEL格式的数据,然后通过EXCEL进行积分,从而得到比较精确的脉冲功率数据。

对于MOSFET温升计算有如下公式:

Trising = P × Zθjc × Rθjc
其中:

Rθjc------结点至表面的热阻,可从元器件Date sheet中查得。
Zθjc------热阻系数
Zθjc = Trising ÷( P × Rθjc)
Zθjc = 66 ÷ (10000 × 0.45)= 0.015

2.3 根据单脉冲的热阻系数确定允许的短路时间

由图3最下面一条曲线(单脉冲)可知,对于单脉冲来说,要想获得0.015的热阻系数,其脉冲宽度不能大于20us。

3 设计短路保护应注意的几个问题

由于不同控制器的PCB布线参数不一样,导致相线短路时回路阻抗不等,短路电流也因此不同。所以,不同设计的控制器应根据实际情况设计确当的短路保护时间。

由于应用中使用的电源电压有可能不同,也会导致短路电流的不同,同样也会影响到保护时间。

注意控制器实际工作时的可能最高温度,工作温度越高,短路保护时间就应该越短。

本文讨论的短路保护时间是指MOSFET能承受的最长短路时间。在设计短路保护电路时,应考虑硬件及软件的响应时间,以及电流保护的峰值,这些参数都会影响到最终的保护时间。因此,硬件电路设计和软件的编写致关重要。

本文讨论的短路保护时间是单次短路保护时间,短路后短时间内不能再次短路。如果设计成周期性短路保护,则短路保护时间应更短。

4 结论

短路保护在瞬间大电流时能对MOSFET提供可靠的快速保护,大大增加了控制的可靠性,减少了控制器的损坏率。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭