当前位置:首页 > 汽车电子 > 汽车电子
[导读]摘要:从工程实用和维护的角度出发。提出一种针对于车载组合导航系统的在线标定算法。该算法使用卡尔曼滤波作为估计工具,通过趋于一般运动状态的路径设计对待标定的误差项进行有效激励。仿真卡尔曼滤波结果表明,该

摘要:从工程实用和维护的角度出发。提出一种针对于车载组合导航系统的在线标定算法。该算法使用卡尔曼滤波作为估计工具,通过趋于一般运动状态的路径设计对待标定的误差项进行有效激励。仿真卡尔曼滤波结果表明,该算法使得待标定的各误差项根据车行轨迹在较短的时间内逐步收敛,实现在一般跑车实验中不拆卸惯性器件而达到标定的目的。这种在线标定的处理方法在实际使用和维护具有极大便利。
关键词:组合导航系统;在线标定;卡尔曼滤波;路径设计;激励

    对于激光陀螺捷联式组合导航系统,影响系统精度的主要误差源有:惯性器件的刻度系数误差、零位误差及轴安装不对准角等。为了确保系统的对准和导航精度,必须利用精密转台对以上误差源进行精确标定。并通过系统软件加以补偿。
    一般情况下,在完成系统标定后,若不对陀螺、加速度计进行重新拆装,则陀螺和加速度计的安装偏角基本保持不变。但陀螺漂移和加速度计零位却存在逐次启动不重复性误差,尤其是经过较长时间后,相对于标定值将产生很大差异,使系统无法满足对准、导航精度要求。为了解决这个问题,通常每隔几个月将惯导系统从运载体上拆卸下来,并安装到转台上,重新标定陀螺漂移和加计零位以改善系统性能。显然,这种处理方法在实际使用和维护中比较繁琐。
    为改善这种状况并且达到延长定期标定周期的目的,提出组合导航系统相关误差项在线标定算法。该算法依据GPS高精度的位置、速度信息和捷联系统本身导航输出结果之间的差异,以捷联惯导系统的位置速度解算作为滤波器的观测量,将惯导系统的基本误差项与加计的零偏、刻度因子误差以及陀螺的常值漂移误差作为状态量,认为GPS定位误差是零均值的白噪声,通过相应的估计方法估算捷联惯导系统误差和器件误差,从而实现对组合导航系统常值误差项的补偿。

1 在线标定算法
1.1 坐标系定义
    本文定义i系为地心惯性坐标系,e系为地球坐标系,n系为导航坐标系即东-北-天坐标系,b系为载体坐标系即右-前-上坐标系。
1.2 卡尔曼滤波器的设计
    对于车载组合导航系统,在定期标定周期内认为系统的安装误差不发生变化,标定的主要对象是惯性器件刻度系数误差及常值误差项。
因此这里的卡尔曼滤波选取系统误差项以及陀螺、加计常值误差和加计的刻度系数误差作为滤波状态量,共14维。


2 仿真验证及分析
2.1 路径设计
    对所设计的SINS/GPS滤波器进行1 200 s仿真,具体路径描述如下:0~100 s,车体静止,位置为(108.9l,34.245);10l~310 s,车体向北加速到10 m/s。载体轴向加速度为1m/s2,并以10 m/s的速度北向运动到310 s,此时的位置为(108.91,34.265);311~500 s,车体从311 s开始向东转弯,同时东向开始加速到10m/s,载体轴向加速度为l m/s2,北向速度减为0,车体以10 m/s的速度东向运动到500 s;501~l 200 s,车体从501 s开始向北转弯,同时北向开始加速到10 m/s,载体轴向加速度为l m/s2,东向速度减为零,车体以10m/s的速度北向运动到1 200 s。
2.2 仿真结果
    通过编写轨迹发生器、捷联惯导算法、卡尔曼滤波组合导航算法对车载组合导航系统在线标定算法进行仿真,其各项具体仿真结果如图1~图3所示。


2.3仿真结果分析
    分析卡尔曼滤波仿真估计结果可以得到:
    1)车体进行水平加速度运动时,水平姿态误差开始收敛,且估计效果与加速度大小和持续时间有关。在车体各轴存在加速度输入时,加计的刻度系数误差可估。
    2)车体存在一定水平加速度时,相应轴加计零位开始收敛,由于从陀螺漂移到速度误差需经过两次积分,所以使用速 度位置量测对于陀螺漂移估计速度较慢,尤其是天向陀螺。
    3)由于使用速度观测,速度误差可快速精确估计,从惯导 系统原理也能得到姿态误差较易得到的结论,但是对于其他 误差估计一般较慢。

3 结论
    通过仿真分析。验证车载组合导航系统在线标定算法的可行性。这种方法依靠车辆正常的行驶过程基本估计出相关捷联惯导系统误差量,但还存在一些需要改进的地方,在提高导航精度的滤波方法以及实用性、快速性、便利性等方面,还可考虑用SINS/GPS/OD联邦滤波或自适应滤波实现。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭