学习Linux中的UDP
扫描二维码
随时随地手机看文章
16为UDP长度,表示整个数据报(UDP首部+UDP数据)的最大长度(64KB)
检验和:如果校验和出错,就会直接丢弃(检验的是把首部和数据部分一起都检验)
校验值首先在数据发送方通过特殊的算法计算得出,在传递到接收方之后,还要在重新计算。如果某个数据报在传输过程中被第三方篡改或者由于线路噪音等原因受到损坏,发送和接收方的校验计算值将不会相符,由此UDP协议可以检验是否出错。
源端口号:在对方回信是选用,不需要时可用全0
目的端口号:在终点交付报时必须要用到
长度:UDP用户数据报的长度,其最小值是8(仅有首部)
UDP的特点
无连接:直到对端的IP和端口号就直接进行传输,不需要建立连接
不可靠:没有确认机制,没有重传机制;因为没有网络故障该段无法发送到对方,UDP协议层也不会给应用层返回任何错误信息
面向数据报:不能够灵活的控制读写数据的次数和数量
控制选项较少,数据传输过程中延迟小,数据传输效率高
面向数据报
应用层交给UDP多长的报文,UDP原样发送,既不会拆分也不会合并
例:用UDP传输100个字节的数据
如果发送端调用一次sendto,发送100个字节。那么接收端也必须调用对应的一次recvfrom,接收100字节;而不能循环调用10次recvfrom,每次发送10个字节
UDP的缓存区
UDP没有发送缓存区,调用sendto之后会直接交给内核,由内核·将数据传给网络层协议进行后续的传输动作。因为UDP是不面向连接的,所以没有重发机制,也就不需要发送缓存区将已经发送的数据保存下来为了发送失败进行重传做准备
UDP具有接收缓存区。但是这个接收缓存区不能保证收到的UDP报的顺序和发送UDP报的顺序一致;如果缓存区满了,在到达的UDP数据就会被丢弃
UDP的使用注意事项
UDP协议首部中有一个16位的最大长度,也就是说一个UDP能传输的数据的最大长度是64K(包含UDP首部)。但是64K在当今的互联网环境下,是一个非常小的数字。如果我们需要传输的数据超过64K,就需要应用层手动的分包,多次发送,并在接收端拼装
UDP首部中校验和的计算方法有些特殊。在计算校验和时,要在UDP用户数据报之前增加12个字节的伪首部
伪首部既不向下传输也不想上递送,而仅仅是为了计算校验和
与IP数据报的校验和只检验IP数据报的首部不同,UDP的校验和是把首部和数据部分一起都检验
伪首部:
基于UDP的应用层的协议
NFS:网络文件系统
TFTP:简单文件传输文件协议
DHCP:动态主机配置协议
DNS:域名解析协议
对于UDP书写服务器的思路
由于UDP是无连接的,所以对于两个处于同一局域网下计算机的进程之间通信,是不需要两台计算机之间的进程进行连接的,对于UDP使用的接口是需要包含知道从哪里接收消息的,要发送消息到哪里的。
实现本地通信
服务器
只需要在服务器创建一个套接字
使该套接字对于本地地址(127.0.0.1)进行绑定,并且绑定一个端口号(1024--65535)就行
绑定本地地址是为了对于本地计算机的两个进程进程通信,而绑定端口号是为了绑定一个进程,是为了对于客户端进行发送消息到服务器的时候,可以找到服务器
然后就接受客户端发来的消息
对于客户端的消息进行处理然后就可以再次将处理后的消息进行返回
客户端
绑定一个套接字
为了绑定一个进程,可以和服务器进行通信,将消息发送过去的时候要让服务器知道是哪一个进程再和他进程通信
客户端只需要向服务器发送消息
然后再次从客户端接收消息就好了,不需要考虑要进行连接
实现处于同一局域网下的不同主机间进行通信
和本地通信的一致,只是对于套接字绑定的ip地址不一样了
也对于套接字要绑定该局域网的ip地址以及一个端口号,不需要在绑定本地地址(127.0.0.1)
这样的话处于同一局域网下的计算机的进程就可以进行通信了
对于客户端来说没有任何改变,仍然是只需要知道服务器的ip和端口号就行了
对于UDP服务器要注意的问题
启动客户端
启动客户端的时候必须给客户端输入一个ip地址和端口号,这个ip地址和端口号也就是要知道客户端要发送消息给哪一个服务器进行发送
启动服务器
必须要给服务器绑定一个ip地址和端口号,也就是要注意该服务器处于该计算机上的哪一个进程上