当前位置:首页 > 公众号精选 > 21ic电子网
[导读]1、什么是地弹1.1、地弹的概念地弹、振铃、串扰、信号反射······这几个在信号完整性分析总是分析的重点对象。初学者一看:好高深! 其实,感觉高深是因为你满天听到“地弹”二字,却到处找不到“地弹的真正原理”。 如果你认真读笔者的“噪声的起源”章节,其实你已经...

1、什么是地弹

1.1、地弹的概念

地弹、振铃、串扰、信号反射······这几个在信号完整性分析总是分析的重点对象。初学者一看:好高深! 其实,感觉高深是因为你满天听到“地弹”二字,却到处找不到“地弹的真正原理”。 如果你认真读笔者的“噪声的起源”章节,其实你已经认识了地弹! 地弹,就是地噪声!
1.2、为何叫地弹
既然是地噪声,为啥叫“地弹”?为什么既然是一样的东西,却换了个名称,害的我苦苦思索不得其解? 低频时,地噪声主要是因为构成地线的导体有“电阻”,电路系统的电流都要流经地线而产生的电势差波动。 高频时,地噪声主要是因为构成地线的导体有“电感”,电路系统的电流快速变化地经过这个“电感”时,“电感”两端激发出更强的电压扰动,形象的称为“地弹”。 地弹,一般对IC而言。因为芯片内部的“电路地”和芯片的“地引脚”实际上是用一根很细很细的金线连接起来的,所以这个金线电感较大,所以可能会导致芯片内部电路的地和现实PCB的地有强烈的“电压差波动”——很强的地弹现象!这个地弹不像PCB板那样,可以通过增加去耦电容减弱。 假设你有一块B PCB板,一块A主板;B PCB板插在主板上使用。再假设A、B的地线连接点不够大,当A、B间有高速信号通讯时,B板上的“地平面”和A板上的“地平面”将有较大的“地间电压差波动”。这同样是一种PCB板上的“地弹效应”。
地弹,其实是“地噪声”的别名而已,理解就好!估计你不用往下看都可以了。
2、地弹形成的机理和危害
本来不想写地弹的机理,感觉与“噪声的起源”重复了。但思来想去,感觉这么经典的问题,还是不怕多提几下,所以又写了下来。
2.1、地弹形成的机理
如下图,红色框内代表数字电路。“噪声的起源”章节中已经讲述:当下图中S5在不断的向左右切换时,由于地线上E、A间的R14电阻的存在,E点将相对于A点产生电势差。在高频状态下,E、A电势差的主要起因不再是“E、A间的电阻”,而是“E、A间的电感”。
“E点的地”相对于“A点的地”的地噪声就是电路系统工作时的地弹现象。
科普:什么是地弹?
2.2、地弹的危害
下图,也是“噪声的起源”章节的内容,地噪声(地弹)相当于在一个“拥有理想地”的电路中,被外部“输入地噪声”。 那么,假设E点上存在着1MHz的地噪声,这会有什么危害?
科普:什么是地弹?
2.2.1、地噪声使所有信号线上出现噪声 由上一章“地环路的危害”分析可知,假设上图中
框内的数字模块有20根信号线,那么地噪声将直接反应在20根信号线上,从而影响这些信号的波形质量,并通过这20根信号线向外辐射。
2.2.2、地弹使地线产生辐射 也许你会问:地线也会产生辐射? 也许你阅读了某些讲PCB布线的书籍上描述到:不正确的铺地将产生“地线辐射”,加重干扰!——但是你不明白其原理,甚至怀疑书本作者有没有写错! 那我告诉你,地线真有可能存在辐射! 下图是一个单面PCB板的布线示意图。蓝色线代表从E点连出来的地线,细长地走单独分布在PCB板边缘,不和任何电子模块连接。 由于该例子中,E点相对于A点存在1MHz的地噪声,那么整条蓝色的地线都相对于A点存在1MHz的噪声。而由于这条地线长长地拉在PCB板的边缘,这条线像一根发射天线那样(长长的形状、上面有1MHz的“将要发射的信号”),不断地发射“地噪声”。
科普:什么是地弹?
3、如何减弱“PCB地弹效应”
3.1、增加恰当的去耦电容
实际上,为了减小1MHz对整个电路的干扰,我们在D、E点间加入去耦电容C7。如图示。那么,这个电容的作用是什么?
科普:什么是地弹?
其等效电路分析如下(注意,该等效电路不是非常准确,但是能说出大致原理,精确的模型请读者在技术上进阶后自行思考分析): 由于C的容抗为:Zc=1/(2πfc),故对于电源和地的1MHz的噪声而言,等效为图3.1-2的R34。由于R34的阻抗远远小于(R32 R33 R35),而“噪声信号源”(即:图中的数字电路模块)又有相当大的“内阻”,所以会产生2个效果:1、“噪声信号源”的大部分能量将通过R34——因而大部分噪声能量通过图中的“(1)”环路构成较小的环流路径而消失掉,这部分能量虽然强,但是不会干扰“(1)”以外的电路;只有小部分能量“逃出”“(1)”环路,以较弱的能量干扰其他电路。2、“噪声信号源”的1MHz方波干扰将不复存在,将被C7滤成图中实线表示的类似正弦波的变化平滑的波形。 这样的好处是:1、环路面积减小,高频的辐射能量减轻,EMC干扰将大大减小;2、方波干扰变成正弦波干扰,其高次谐波分量将大大减小,所以其干扰能力也大大减弱! 哈哈,太和谐了! 现在,你是否明白了:为什么数字芯片电源端一般要得接一个电源去耦电容?为什么很多讲PCB布线的书籍上都会出现“要添加电源去耦电容”?
科普:什么是地弹?
3.2、用粗短的“地线”
由于地线存在电阻、电感而产生地噪声。所以,我们要减小地线的“电阻、电感”。 当地线增大、长度减短时,其电阻和电感会减小,从而成功减小地噪声。这样,地弹将大大减小! 所以在PCB Layout布线时,能用粗的地线就不要用细的地线;能用短的地线就不要用长的地线。 注意:不要为了减短一点点地线而盲目地加长N倍的电源线,电源与地都是非常重要的,必须具体问题具体分析。所以还是那句——读者得注重原理,而不是具体的“减短地线的做法”。
4、本章重点
1)、地弹,就是地噪声
2)、地弹使地线产生辐射
3)、增加恰当的去耦电容可减弱模块间的地弹效应
4)、注重原理,而不是具体的做法
来源:网络版权归原作者所有,如有侵权,请联系删除。
21ic电子网

扫描二维码,关注更多精彩内容

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭