当前位置:首页 > 公众号精选 > SiP与先进封装技术
[导读]1. NAND的历史2020年5月17日的会议(Tutorial)“PARTI-3DNAND”中,首位出场的是铠侠(原东芝存储半导体)的NoboruShibata先生,他在主题为《HistoryandFutureofMulti-Level-CellTechnologyin2Dan...


1.  NAND的历史


2020年5月17日的会议(Tutorial)“PART I - 3D NAND”中,首位出场的是铠侠(原东芝存储半导体)的Noboru Shibata先生,他在主题为《History and Future of Multi-Level-Cell Technology in 2D and 3D Flash Memory》的演讲中,说明了NAND的历史,如下图1。
3D NAND Flash技术的发展图1:NAND存储密度增加的趋势
Noboru Shibata先生以NAND的字位(Bit)为焦点,如上图1展示了2字位(MLC)、3字位(TLC)、4字位(QLC)分别对应了何种细微性、何种存储容量的芯片。
在2009年(32纳米)以后,存储半导体密度的增长趋势呈现了一时的放缓现象,自2016年开始转向3D趋势,且趋势越来越明显。因此,人们普遍期待未来3D化的NAND将会继续扩大存储的密度。
Shibata先生的演讲之后,WD的Yan Li先生做了题目为《3D NAND Architecture and its Application》的演讲,其中提到31年来NAND的细微化全过程。如下图2所示。
3D NAND Flash技术的发展图2:NAND存储密度增加的趋势
1987年在IEDM上公布的NAND的细微化为1um。此次的发言者应该是NAND的发明人—舛冈富士雄先生(笔者推测),在次年的1988年,以1um生产出了4M bit的NAND,1992年以0.7um发布了16M bit。自此,东芝的NAND业务开始正式启动。
后来,随着细微化、高度集成化的发展,2014年以1Znm(应该是15纳米)发布了128Gbit的NAND。但是,后来由于发生了近邻存储单元(Memory Cell)之间的串扰(Cross Talk)问题,放弃了2D的细微化,自2015年开始转入(Paradigm Shift)3D时代。而且,除了细微化,还开始了在纵向堆积更多层数的“多层化”发展。
这种多层化以48层、64层、96层(约1.5倍)的形式发展,可以推测,下一步应该是1.2倍的112层。

2.  各3D NANA厂家的现状


会议(Tutorial)“PART I - 3D NAND”的第三位演讲者是Applied Materials(AMAT)的Tomohiko Kitajima先生,演讲题目为《Materials and process technology driven 3D NAND Scaling beyond 200 pairs》。在这篇演讲中Tomohiko Kitajima先生简明地分析、比较了各家NAND厂商的现状,且说明了未来的技术蓝图。这篇演讲,为理解3D NAND,很有帮助,且演讲者在过程中反复展示了视频说明。下面笔者简单介绍其中一部分。
下图3是各家厂商生产的3D NAND的所有断面SEM图,此外,图4是各家厂商的最新的3DNAND的SEM照片与构造。看到这两幅图,笔者感觉很震惊、很有价值。
3D NAND Flash技术的发展图3:各半导体厂家的3D NAND的断面SEM照片
3D NAND Flash技术的发展图4:各半导体厂家的最新的3D NAND的比较

3.  行业先驱--三星(Samsung Electronics)直面的问题


下面我们再看下一图3,仅从这一张图我们就可以看到各家集团公司的技术、战略、面临的问题等信息。
三星(Samsung Electronics)正在推进24层、32层、48层、64层、92层以及3D的的多层化发展,由于中国西安工厂大量生产并最先开始出货的是48层,因此可以判断24层、32层是样品交货。三星是最先开始出货48层产品的,且已经发售64层产品,因此可以断言三星控制了48层和64层的市场。
业界普遍认为三星竞争力的来源在于纵横比(Aspect Ratio、AR)较大的内存孔(Memory Hole)的干蚀刻技术(Dry Etching)。三星通过与Lam Research共同研发,开发了AR较大的HARC(High Aspect Ratio Contact)蚀刻设备与技术,远远领先于其他公司。
此外,在64层的下一代产品上,三星“摔了一个大跟头”,尽管其他公司已经开始生产96层,只有三星在生产这种处于中间位置的92层的产品。此外,从断面图的高度来看,三星的92层纵向高度明显比其他公司的96层低了很多。
主要原因如下:铠侠与WD等其他公司的96层是利用两个48层堆叠而成的,然而仅有三星采用了一次性加工的方式、进行内存孔(Memory Hole)的HARC蚀刻。
也就是说,AR越大,HARC蚀刻的难度也越大。具体而言,蚀刻速度会呈现指数级的降低,且会发生各种异常情况,如很难控制内存孔(Memory Hole)的方差。
为此,三星将纵向的层数做成92层(比其他公司少了4层),进一步将存储单元(Memory Cell)朝纵向收缩,尽量把HARC的AR做得更小。据推测,三星的92层的产品良率十分低。
尽管如此,三星在2019年11月19日公布说,新一代的128层也会采用一次性加工的方式进行生产。笔者认为,与其拘泥于一次性加工的生产方式,不如再研发其他新的生产方式,因此三星的未来堪忧。

4.  铠侠和WD生产的96层产品


与由于对HARC蚀刻技术怀有较大的信心而“摔了跟头”的三星不同,铠侠和WD通过96层产品统领了全球市场。根据笔者从供应链等处得到的信息来看,在2019年时间点的第四季度,日本四日市工厂的96层的稼动产能是三星的3倍-4倍。
那么,为什么铠侠和WD可以在96层上获得成功呢?
在64层之前,铠侠和WD在HARC蚀刻技术方面,都远远落后于三星。因此,他们尽早地将堆叠两个48层应用到了96层上。
从图3 来看,就96层而言,三星以外的其他厂家都分为Lower和Upper。在这种双层堆叠方式形成96层的情况下,很难将12英寸晶圆完美地与将近约2兆个内存孔(Memory Hole)贴合。据推测,即使在四日市工厂,也曾因为这个问题而导致产品的良率低下。
此外,自2019年夏季开始,行业的趋势就变化了。笔者从就职于铠侠的朋友得知,“如果要我们堆叠500层,我们也可以做到”!就内存孔(Memory Hole)贴合的技术而言,笔者推测他们应该是取得了某种技术突破(Breakthrough)。此外,据笔者调查的各家NAND厂家的稼动产能而言,如上文所述,四日市工厂的96层,具有压倒性的规模。
下面我们再看一下图3,Intel&Micron在64层以后,采用了双层堆叠的方式。此外,海力士是自72层以后(不是64层),采用双层堆叠的方式。
此外,比较一下各家的双层堆叠方式,我们可以看出,铠侠和WD的Lower、Upper的分界线十分明显。因此笔者推测,铠侠和WD为解决内存孔的贴合问题,在Lower、Upper之间植入了某种特殊的构造。笔者认为,正是这种特殊的构造技术使铠侠和WD的双层堆叠的良率大幅度提高、产能远超三星,且顺利地生产96层。
三星由于对HARC蚀刻技术过度自信,导致“栽了跟头”,但是,铠侠和WD及时地放弃了一次性加工的生产方式,所以成功了生产了96层的双层堆叠方式。这让人想起了2020年1月23日逝去的哈佛商业学院的Clayton M. Christensen教授提出的“创新的困境(Innovation Dilemma)”。

5.  各厂家的最新3D NAND


下面我们看看下图5,即比较了各家厂商的最新3D NAND。此处最引人注目的是中国的紫光集团旗下的长江存储(YMTC,原XMC)的3D NAND。
3D NAND Flash技术的发展图5:比较各家厂商的最新3D NAND
2016年3月,YMTC突然宣布要进军3D NAND。YMTC 以较高的薪资待遇汇集了大批的日本、台湾、韩国等地的半导体技术人员,首先致力于32层的研发。仅仅用了一年的时间就成功研发了32层的产品,且跳过48层直接开始研发64层。同时,2019年9月17日,YMTC成功量产了64层。
就YMTC的64层产品而言,控制数据读取、写入的CMOS线路由一种不同于存储单元(Memory Cell)的晶圆制造而成,分别通过Bonding工艺进行贴合。
为了扩大单个芯片的存储密度,一般采用的是将CMOS线路放在存储单元下部的CUA结构(CMOS Under Array),实际上,Intel&Micron和海力士正是采用的这种模式。但是,YMTC的Xtacking则采用不同的键合工艺!
在2019年第四季度时间点,YMTC的64层稼动产能不足2万个,但是,在2020年4月12日,YMTC发布说,成功研发了128层的、1.33Terabit、QLC的3D NAND。未来,3D NAND的“风向标”可能要发生变化了。

6.  3D NAND的技术蓝图(Roadmap)


一场出人意料的新冠肺炎促使了远程办公、在线授课、在线诊疗等网上业务的发展。IMW2020也是在线召开的。结果,导致了数据中心(Data Center)的需求暴增,用于服务器的NAND的需求也呈现了爆发式增长。
因此,人们对于3D NAND的高密度化的期待越来越高。其研发的R
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭