当前位置:首页 > 公众号精选 > 21ic电子网
[导读]传递函数在电路分析中的应用必不可少,用于分析和调整系统的稳定性。对于一般的同相反相放大电路,传递函数比较简单,通过简单的KCL原理就能得到,这里不做赘叙。但是对于T型反馈网络,用较小的阻值就可以得到较大的放大倍数,在这种电路应用KCL和KVL,节点法等方式求解传递函数,计算过程就...

T型网络快速求解传递函数的方法


传递函数在电路分析中的应用必不可少,用于分析和调整系统的稳定性。对于一般的同相反相放大电路,传递函数比较简单,通过简单的KCL原理就能得到,这里不做赘叙。但是对于T型反馈网络,用较小的阻值就可以得到较大的放大倍数,在这种电路应用KCLKVL,节点法等方式求解传递函数,计算过程就会显得比较臃肿和麻烦。以下的内容是参考@xukun977的快速求解法,而且具有很强的通解性,在不同的网络中都可以得到应用。下面就是T型网络的典型应用,在高灵敏度的场合不会要求很大的电阻,T型网络可以实现高灵敏度而无需不切实际大的电阻。
T型网络快速求解传递函数的方法
在这里先使用和其他帖子不一样的地方,输入信号用电流源。也用类似的节点法写出传递函数,
1.运放同相端接地,所以V =V-=02.在节点V1使用KCL,将电流相加:-V1/R -V1/R1 (V0-V1)/R2=03.由于V-=0,所以输入电流I流过R就是V1,因此V1=-R*I利用以上关系联立求解:V0=-k*R*I
其中K=1 R2/R1 R2/R,因此要得到一个大点的放大倍数因子,选择合适的R阻值就可以实现的。
这样的求解是课本习题的标准做法,本身也没有什么问题,但是就是做起来稍微显得麻烦而已。
现在使用快速求解法得到T型网络的传递函数,先拿出结论,
T型网络快速求解传递函数的方法
T型网络快速求解传递函数的方法
先对这个公式的几个参数做一个解释,
第一步,Av是便是没有R3的增益。看做R3的阻抗无穷大。将R3看作开路,这个就是基本的反相放大电路了。
显然,此时Av=-R1 R2/R4
第二步,那么Rvo0的含义,就是令输出为零-null,计算从R3看进去的阻抗,此时电路可以等效为下图:
关于nullator,维基百科给出了解释,就直接贴过来的。

T型网络快速求解传递函数的方法



ZR3=VR3/IR3T型网络快速求解传递函数的方法
由于此时电路比较简单,使用KCL方便的,IR3=VR3/R2 VR3/R1, 可以快速得到阻抗是R1R2的并联,ZR3=R1*R2/(R1 R2);
第三步,那么Rvin0的含义,就是将输入短路到GND,计算从R3看进去的阻抗,此时电路可以等效为下图:
ZR3=VR3/IR3
T型网络快速求解传递函数的方法
运放的虚短虚短可知V =V-=0I =I-=0,由于Vin等于0,所以流过R4的电流也是0,根据KCL可知,流过R1的电流也是0。再进一步就可以得到R1两端的电压是0,所以图中1点的电位是0,那么VR3=V1=0,这样从R3看进去的输入阻抗就是0了。
现在公式所有参数都求解出来了,只需要将得到的数据代入,就可以得到传递函数的表达式了:
T型网络快速求解传递函数的方法
在这里我写了很多,实际应用过程中,根本不需要怎么计算,就可以快速的得到公式中各个参数,比起传统的KCL,节点法计算传递函数,这个要简单方便很多的。
下面再用另外一个例子来说明,用快速计算法求解传函的方便性。这个电路图计算传递函数,要用节点法的话,估计要列举很多公式。当然最后也是能解出来的。
T型网络快速求解传递函数的方法
现在使用快速求解法,计算传递函数表达式。
第一步,Av是计算C1开路情况下的阻抗,很显然就是普通的并联分压电路,先将R1R3串联再和R2并联,随后和R5分压得到输出电压、
T型网络快速求解传递函数的方法
第二步,令输出Vo为零-null,计算C1看出去的阻抗,Zc1=R4 VT/IT,得到下面示意图,
其中IT=I1 I2,根据nullator的定义可知,V0=0,I0=0,显然所以流过R5的电流是0,那么I1=VT/R3,流过R2的电流也是I1,所以1点的电位V1=-I1*R2= -[VT/R3]*R2,此时V1也是等于Vin的。为了统一计算方便,下文就不再用Vin表示了。
那么I2=(VT-V1)/R1, IT=I1 I2
T型网络快速求解传递函数的方法
通过以上两个等式,可以联立求解,得到VTIT的关系,从而可以得到阻抗。
T型网络快速求解传递函数的方法
经过简单化简,就能得到在C1 R4看出去的阻抗
T型网络快速求解传递函数的方法
最后从C1看出去的阻抗Zc1=R4 Z;
第三步,将输出Vin短路,计算C1看出去的阻抗,Zc1=R4 VT/IT,得到下面示意图,这个图计算Zc1就比较方便了,就是几个电阻的串并联方式,这里就不展开了,可以很快速的得到阻抗是R4 R1//[R3 (R1//R5)].
T型网络快速求解传递函数的方法
现在公式中的所有参数都计算出来了,只要讲数据带入就能得到最后的传递函数表达式:
T型网络快速求解传递函数的方法
T型网络快速求解传递函数的方法
最后公式看起来稍微有些复杂,但是通过软件化简,得到的结果就简单了。实际表达式复杂也从一方面反应了,要是用节点法得到这个表示式会更加麻烦的。这个帖子主要是解释T型网络的快速求解法,所以最好表达式是什么样就是什么样,不用刻意追求一个极简 表达式。
用两个例子应该是清楚自然的介绍了在复杂电路网络下求解传递函数的方法。各位网友可以尝试用两种方法计算传递函数,看哪一种方法更加方便快捷。
如果想理解这个快速求解的来源,实际是EET原理的举例说明,详细内容可在IEEE上面搜索有相应的论文介绍,也可以去B站看原理的介绍,这里推荐视频查看[size=14.6667px]https://www.bilibili.com/video/BV1Xv411J7sw?from=search
21ic电子网

扫描二维码,关注更多精彩内容

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭