当前位置:首页 > 公众号精选 > 21ic电子网
[导读]出品 21ic论坛 kk的回忆网站:bbs.21ic.com看到这个题目,很多论坛朋友都会嗤之以鼻。这三个电路从上电路公共基础课就开始学,这有什么难度的,确定放大饱和区,拿到已知条件开始答题。这是大学期末开始的做法,实际产品设计没有那么多的已知条件让判断,而是项目需求:我要得到一...

出品 21ic论坛 kk的回忆
网站:bbs.21ic.com
看到这个题目,很多论坛朋友都会嗤之以鼻。这三个电路从上电路公共基础课就开始学,这有什么难度的,确定放大饱和区,拿到已知条件开始答题。这是大学期末开始的做法,实际产品设计没有那么多的已知条件让判断,而是项目需求:我要得到一个什么效果,具体怎么实现的,工程师想办法实现就可以了。在这里只是讨论晶体三极管工作在放大区(active mode)的共射,共集,共基放大电路。晶体三极管工作在饱和区的判定条件简单,设计也相对简单。晶体三极管工作在放大区,需要设定直流工作点,增加交流小信号后,不能影响直流工作点,这就对增加的直流小信号幅值有要求。
下文分析过程很多是参考拉扎维的书本,感兴趣的一定要去看看。虽然很多分析过程来自书本,但是整合到一起,看起来就方便直接,也稍微加了一些自己的认识和理解。
《fundamentals-of-microelectronicsbehzad》
下图就是一个很直观的例子:晶体三极管用作放大器的示意图。输入信号只有10mV,但是最后需要驱动一个8Ω的喇叭。这其中就涉及了信号的放大,阻抗的匹配:Amplifier的输入阻抗Rin相对信号源的内阻(200Ω)要足够大,输出阻抗相对喇叭8Ω的阻抗要足够小。根据前面帖子讲到的内容,这个Amplifier是一个典型的电压放大器,使用电压串联负反馈可实现输入输出阻抗的匹配。这个相对学术的名字听的较少,如果说共集放大电路就知道了。但是共集放大电路的放大倍数≤1,起不到放大的作用,一般和共射放大电路级联使用。在下面的部分展开说明;
基本共射共集共基放大电路怎么工作?可以来看看
在文中画的电路图,都是默认直流通路已经构建后,只对交流小信号放大倍数,和阻抗做分析。分析中,直流电压都是认作交流GND分析。
在晶体三极管小信号分析中,各种教材都有指出,晶体三极管的小信号电路模型表明晶体三极管是流控电流器件,即输出电流ic受控于电流ib,但是ib的大小又由基极和发射极之间的电压差vbe决定(一定注意,现在符号都是小写,此时都是说的交流信号,直流VBE已经默认建立,同时vbe不会干扰到直流静态工作点),因此也可以说晶体三极管看作压控电流器件,输出电流ic受控于输入电压vbe,很多书本也成为vπ因此后面的分析都会用到下面等式ic=gm*vπ其中gm就是跨导,表示正向受控作用的增量跨导(vbe对ic的控制)同时gm=ICQ/VT,是直流静态工作点下集电极的电流和热电压(常温25mV)的比值,所以对于确定的电路,静态工作点是不能改变的,否则交流放大电路也会变化。
基本共射共集共基放大电路怎么工作?可以来看看有了这个基础公式,就能毕竟容易理解交流信号从晶体三极管的三个极输入的阻抗是多少了。
示例一:施加信号源加到基极,从基极看进去阻抗定义为Zin=vx/ix,,也可以表示为rπ=vx/ix,显然rπ=vx/ib,ic=gm*vπ=β*ib,以上等式经过简单化简,就有rπ=β/gm
基本共射共集共基放大电路怎么工作?可以来看看示例二,施加信号源加到基极,从集电极看进去阻抗定义为Zin=vx/ix,源从等效图可以看出,三极管的基极和发射极都是交流地,所以ic=gm*vπ=0,因此Zin=ro所以从集电极看进去的阻抗就是ro,ro是厄尔利电压,反应出基区宽度调制效应,ro=VA/ICQ,也是和直流静态工作点有关系;
基本共射共集共基放大电路怎么工作?可以来看看示例三,施加信号源加到发射极,从发射电极看进去阻抗定义为Zin=vx/ix基本共射共集共基放大电路怎么工作?可以来看看想吐槽一句,WPS的公式编辑太麻烦了,还是手写方便的。
从下面的推导可知,从发射极看入的阻抗是(1/rπ) gm的倒数,但是知道工作在放大区的三极管的放大倍数β>>1,β=rπ*gm>>1,所以gm>>(1/rπ)所以从发射极看入的阻抗就是(1/gm)
基本共射共集共基放大电路怎么工作?可以来看看
现在写了这么多貌似,还没有写到一个完整的电路,磨刀不误砍柴工。有了这三个基本阻抗的计算结果,再去看复杂的电路,就会很简单的。
一:共基放大电路:
下面推导一个共射放大电路的放大倍数,输入阻抗,输出阻抗的电路;
下图是一个共基放大电路的小信号模型,直流通路默认设计完成。
定义vπ和vout电压方向都是上正下负,因此iout方向和ic方向是相反的Ic=gm*vπ=-vout/RcVπ=-vout/(Rc*gm)ic=β*ibib=Vπ/rπ由以上式子可知Vπ/rπ=--vout/(Rc*β)
基本共射共集共基放大电路怎么工作?可以来看看对P点电压进行分析:Vp=-ib*(rπ Rs)=[vout/(Rc*β)]*(rπ Rs)ib ic=ieVπ/rπ gm*rπ=(vp-vx)/RE对以上的表达式联立求解,可以得到vout/vx的表达式:A=Rc/[RE RB/(β 1) 1/gm]
输入阻抗的表达式Zin=vx/ix,需要画出下面的等效电路图。上文已经讲到,从发射极看入的阻抗是1/gm,流过Rs的电流是ix/(1 β)
Zin=vx/ixVx=ix*(RE (1/gm)) Rs*ix/(1 β)经过化简,Zin=RE (1/gm) Rs*/(1 β)
基本共射共集共基放大电路怎么工作?可以来看看
求解输出阻抗需要将输入信号接GND,在输出端加激励源
基本共射共集共基放大电路怎么工作?可以来看看
很多书籍上计算共基放大电路的输出阻抗,都会忽略Rs的内阻,这样比较好分析。
1.先给出没有Rs请下的输出阻抗:
在节点P处,可以知道流出的电流也是ix,RE和rπ并联看待,vp=ix*RE//rπ同时ix=gm*vp激励源的电压vx=Vro Vp流过ro的电流是ix和gm*vp之和Vro=ro*(ix gm*vp)
将以上等式联立求解,就可以得到输出阻抗Zout
基本共射共集共基放大电路怎么工作?可以来看看
2.当考虑信号源内阻Rs,计算输出阻抗
由于存在Rs,vp电压没有完全加载 BE之间,需要rπ和Rs分压
Vπ=vp*(rπ/( rπ Rs))同时ix=gm* Vπ流过ro的电流是ix和gm*vp之和Vro=ro*(ix gm* Vπ)
将以上等式联立求解,就可以得到输出阻抗Zout
基本共射共集共基放大电路怎么工作?可以来看看
关于上面两个等式,显然只要Rs足够小,甚至可以忽略不计的时候,两个等式是完全成立的,所以在大部分书籍上面只是提到了章节1的表达式,在此做一个说明。
二 共射放大电路
有了共基放大电路的分析,再来看共射放大电路就好理解了。
照样先给出小信号的等效电路图,按照图示表示定义的电压方向,基本共射共集共基放大电路怎么工作?可以来看看
根据小信号模型直接写出各种表达式,得到增益的结果,之前已经分析过gm>>(1/rπ)
基本共射共集共基放大电路怎么工作?可以来看看
所以结果可以化简得到以下的结果
基本共射共集共基放大电路怎么工作?可以来看看
输出阻抗的求法由于需要将输入信号短接到地分析,所以小信号模型和共基放大电路输出阻抗是一样的,在这里再写一次:
基本共射共集共基放大电路怎么工作?可以来看看
输入阻抗是把小信号模型画出来,也就很容易就算出来来了:
Vx=ix*(Rs rπ) ie*REZin=vx/ix=Rs rπ (1 β)*RE
基本共射共集共基放大电路怎么工作?可以来看看
三 共集放大电路
最后的共集放大电路,一般是做跟随器使用,电压放大倍数始终是小于1,这个从表达式是可以看出来的,也画出小信号的等效电路图:
基本共射共集共基放大电路怎么工作?可以来看看根据小信号模型直接写出各种表达式,得到增益的结果
基本共射共集共基放大电路怎么工作?可以来看看
由于Rs是信号源内阻很小,β值比较大,所以增益表达式是可以化简的
基本共射共集共基放大电路怎么工作?可以来看看
这个表达式和大部分书籍是一样的,显然Av恒小于1,所以共集放大电路电压放大倍数是小于1的。
由于计算输入阻抗的小信号等效模型和共射放大电路是一样的,所以输入阻抗的表达是也是一样的:
Zin=vx/ix=Rs rπ (1 β)*RE
增加测试激励源,Zout=vx/ix,由于ix有两条支路,显然输出阻抗是两个阻抗的并联,从发射极看入的阻抗Zi和RE并联得到;
考虑内阻Rs,在支路1里面,之前讲到,从发射极看入的阻抗是1/gm; vx=i1*(1/gm) ib*RsIb=i1/(β 1),从发射极看入的阻抗Z1=(1/gm) Rs*(1/β 1)支路2的阻抗就是REZout=Z1//RE
基本共射共集共基放大电路怎么工作?可以来看看
啰嗦的写了这么多,至此完成三个晶体管基本电路的输入输出阻抗,放大倍数的分析,感兴趣的可以再次计算分析。最后将拉扎维书本的总结性结论列出,方便大家查阅:
基本共射共集共基放大电路怎么工作?可以来看看基本共射共集共基放大电路怎么工作?可以来看看本文系21ic论坛网友kk的回忆原创,资料下载请点击“阅读原文”。版权归原作者所有,如有侵权,请联系删除。

21ic电子网

扫描二维码,关注更多精彩内容

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭