关闭

功率器件

所属频道 电源
  • 原创

    垂直 GaN 技术:在哪些领域会有重大的技术扩张机会?

    垂直氮化镓设备能够达到更高的频率和操作在更高的电压,这应该导致新一代更有效的电力设备,现在的一些挑战,具体来说,你正在工作与横向氮化镓相比,有什么制造问题,问题降低成本?我想这很重要。所以,我们谈论的是学术上的垂直氮化镓,还是我们可以在市场上找到解决方案?

    电源
    2023-02-02
  • 原创

    垂直 GaN 技术:为什么我们需要垂直的氮化镓?

    为什么我们需要垂直的氮化镓?因此,由于输出电容较小,应用中的开关损耗非常小,与横向氮化镓设备相比,保持这些通过均匀材料的最佳传输,而没有额外的层定向到封装,并将框架从设备的顶部和底部离开。

  • 原创

    Onsemi:使用SIC等功率器件为碳中和做出的贡献

    为可再生能源提供动力以创造更美好的明天,因此,不仅是 GaN 和 SiC 等宽带隙半导体,还有围绕电力电子、智能电网、微电网、宏观电网、人工智能的多种技术,都将支持这种扩展。我们作为技术社区和工程师的责任是采取行动做某事,所以我们每个人都应该迈出第一步。因此,我们不仅对个人负责,而且对组织负责。那么阻碍零碳和低碳能源更广泛部署的关键技术瓶颈是什么?你认为生产太阳能电池板等的所谓稀有材料的竞争?

    电源
    2023-02-02
  • 原创

    Soitec 看到了采用 SmartSiC 晶圆的电动汽车中的巨大机遇

    道路运输的电气化对于实现欧盟的脱碳和气候变化目标至关重要。对碳化硅衬底的需求经历了巨大的增长,法国绝缘体上硅 (SOI) 晶圆供应商 Soitec 开发了 SmartSiC 技术,以加速 SiC 在电动汽车中的采用。

    电源
    2023-02-02
  • 原创

    康宁与 Menlo Micro 合作制作电子开关介绍

    固态开关和机电继电器有助于通过电流管理所有设备的电源。尽管无处不在,但传统的开关和继电器仍存在主要缺点,包括能量损失、成本、重量、尺寸、性能和可靠性。这些固有限制影响了设计和部署下一代 5G 网络以及一切电气化的能力——快速过渡到电动汽车、可持续能源和更智能的电网。

  • 原创

    GaN在能源和电力市场已经彻底改变了高功率应用

    到目前为止,我们已经涉足能源和电力市场数十年,我们的目标确实是为专注于电力转换和储能应用的客户提供支持,例如交通运输、可再生能源、重型工业机械。我们一直在全球范围内这样做。所以我想说大约十年前,我们看到对更高效的电源解决方案和高功率密度以及小尺寸的需求在增加。所以这就是为什么我们一直专注于宽带半导体的早期阶段。我指的是氮化镓或 GaN 和碳化硅。这帮助我们走在了今天采用这些技术的前沿。

    电源
    2023-01-22
  • 原创

     SiC 和 GaN 都可以为创建下一代智能电网做出贡献

    SiC 和 GaN 都可以为创建下一代智能电网做出贡献,以解决能源问题,尤其是在电动汽车方面。那么等待我们的未来是什么?但特别是,从长远来看,您认为基于 SiC 的功率器件应该如何发展才能满足下一个更严格的行业要求?

    电源
    2023-01-22
  • 原创

    聊一聊碳化硅,下一波SiC制造的供应链和成本

    今天,我们就来聊一聊碳化硅,下一波SiC制造,供应链和成本。SiC 行业在许多市场都在增长。电动汽车市场正准备转向 SiC 逆变器,正如特斯拉已经做的那样。作为战略合作的一部分,梅赛德斯-奔驰已将 onsemi SiC 技术用于牵引逆变器。因此,SiC 器件的范围得到了广泛认可,并提供了传统 IGBT 的宽带隙替代品。

  • 原创

    数字集成电路需要注意的十个要点:并非所有 PWM 都生而平等

    我们需要了解数字控制的另一个非常重要的方面;这就是 PWM 过程。正如 ADC 是模拟世界和数字世界之间的纽带一样,PWM 模块将同样的功能带回模拟世界。考虑到它对您的控制回路性能的战略贡献,我们花一些时间讨论它是很合适的。

  • 原创

    数字集成电路需要注意的十个要点:  尽可能使用前馈结构来补充反馈结构

    当我在 70 年代后期学习控制理论时,我们从未学习过前馈系统。一切都基于反馈和“G/(1+GH)”。如果我想从我的控制回路中得到一个僵硬的响应,我唯一知道要做的就是提高我的增益,直到我的系统刚好避免振荡!但后来我在 90 年代中期阅读了 Curtis Wilson(无关)的一篇关于前馈控制的文章,它改变了我对控制系统的看法。

  • 原创

    数字集成电路需要注意的十个要点:不要混淆精度和分辨率、滤波器

    上一篇文章我们讨论了模数转换器,更具体地说,是与获取输入样本相关的时序。但是,如果你不小心的话,杂草中还有一个更大的问题正在逼近,它可能会咬你。ADC 转换完成后,结果意味着什么?基于查看这些位,您对输入信号的真正了解程度如何?您真正需要多少位,您真正可以信任多少位?

  • 原创

    数字集成电路需要注意的十个要点:采样频率和同步采样

    上一篇我讨论了与模拟和代码生成相关的更一般的问题。但今天我想把焦点转向模数转换器。ADC 是数字控制应用中最关键的外设之一,因为它构成了模拟世界和数字世界之间的纽带。它也是最容易被误解的外围设备之一。对于 ADC,许多工程师只满足于知道位数和转换速度。但在数字控制应用中,如果我们想要获得满意的结果,就必须更深入地研究 ADC 规范。

  • 原创

    数字集成电路需要注意的十个要点:做好准备和保持怀疑

    数字集成电路设计是一个程序化的过程,包括将规格和特性转换成数字块,然后再进一步转换成逻辑电路。与数字集成电路设计相关的许多限制来自铸造工艺和技术限制。数字IC强调的是运算速度与成本比,数字IC设计的目标是在尽量低的成本下达到目标运算速度。设计者必须不断采用更高效率的算法来处理数字信号,或者利用新工艺提高集成度降低成本。

  • 原创

    使用超低电压 MOSFET 阵列进行设计,第五部分EPAD MOSFET 开关

    EPAD MOSFET 在以适当的栅极电压开启时充当开关,其中在漏极和源极端子之间形成导电通道。源极端子作为输入,漏极端子作为输出。开关的导通电阻取决于由栅极电压控制的沟道导通电流。在这种情况下,如果使用增强型器件,则可以通过栅极端子上的正偏置电压打开开关,信号从源极传播到漏极端子。信号本质上可以是数字的或模拟的,只要用户考虑相对于开关通道导通电阻的输入和输出阻抗水平。

  • 原创

    使用超低电压 MOSFET 阵列进行设计,第四部分EPAD MOSFET 隔离和(二极管)钳位介绍

    许多电路需要将其输入和输入阻抗与输出阻抗隔离,以便输出负载不会干扰输入信号。这有时可以通过使用晶体管缓冲器或运算放大器缓冲器来实现,每种缓冲器都存在许多设计权衡。例如,使用 ALD110800 零阈值 MOSFET,可以提供这种隔离,同时提供偏置到与输入电平范围相同的电压电平的电路输出。这是零阈值 MOSFET 的基本能力。输入和输出电平也可以偏置在固定电压附近,例如 0.0V。