关闭

功率器件

所属频道 电源
  • 保护 RS-485 免受 ESD 影响的基础知识

    RS-485 等工业网络有望在其终端应用中承受严酷的系统级瞬变而不会受到损坏。处理过程中的静电放电 (ESD)、感性负载的中断、继电器触点弹跳和/或雷击都会造成损坏。我们可以通过在差分总线上添加外部组件来保护我们的工业设计免受这些瞬态事件的影响。

    电源
    2022-03-31
  • SiC碳化硅功率器件介绍

    近年来,使用“功率元器件”或“功率半导体”等说法,以大功率低损耗为目的二极管和晶体管等分立(分立半导体)元器件备受瞩目。这是因为,为了应对全球共通的 “节能化”和“小型化”课题,需要高效率高性能的功率元器件。 然而,最近经常听到的“功率元器件”,具体来说是基于什么定义来分类的呢?恐怕是没有一个明确的分类的,但是,可按以高电压大功率的AC/DC转换和功率转换为目的的二极管和MOSFET,以及作为电源输出段的功率模块等来分类等等。

  • SiC碳化硅功率器件SBD特性

    碳化硅和氮化镓是目前商业前景最明朗的半导体材料,堪称半导体产业内新一代“黄金赛道”。 历史上人类第一次发现碳化硅是在1891年,美国人艾奇逊在电溶金刚石的时候发现一种碳的化合物,这就是碳化硅首次合成和发现。在经历了百年的探索之后,特别是进入21世纪以后,人类终于理清了碳化硅的优点和特性,并利用碳化硅特性,做出各种新器件,碳化硅行业得到较快发展。

  • 根据示波器测定MOSFET波形计算功率损耗

    MOSFET/IGBT的开关损耗测验是电源调试中非常关键的环节,但很多工程师对开关损耗的测量还停留在人工计算的感性认知上,PFC MOSFET的开关损耗更是只能依据口口相传的经验反复摸索,那么如何用示波器测试MOS管功率损耗?

  • 反极性保护比较:二极管与 PFET 与智能二极管解决方案

    工程师在选择反极性解决方案时也有很多选择。一些选择包括二极管、P 沟道场效应晶体管 (PFET) 和 TI 的 LM74610-Q1 加 N 沟道场效应晶体管 (NFET)(称为智能二极管解决方案)。在这篇文章中,我将重点介绍所有三种解决方案在汽车应用方面的一些关键方面。

  • 了解 GaN 的电磁兼容性EMI

    氮化镓 (GaN) 晶体管开关速度快!在工作台上,我测量了每纳秒 40V 的开关节点 dv/dt!这比我使用的典型 DC/DC 转换器高约 30 倍,虽然这有助于降低开关损耗,但它确实使满足电磁兼容性 (EMC) 的挑战更加困难。为什么?因为电压和电流的变化率会激活寄生电路元件,从而产生辐射和传导噪声的噪声源。

  • 模拟电磁干扰有可能吗?

    如今,由高频多相 DC/DC 转换器驱动的千兆赫处理器以千兆赫兹的速度与内存通信。在这些频率下,组件和印刷电路板 (PCB) 寄生阻抗会产生与频率相关的电压降、天线结构和 PCB 谐振,进而产生电磁干扰 (EMI)、信号完整性和电源完整性 (SI/PI) 问题。在上一篇文章中,我研究了使用 LMG5200 半桥 GaN 开关等超快功率晶体管满足电磁兼容性的挑战。在这篇文章中,我们将介绍高度复杂的软件工具,这些工具可以帮助在制造之前识别 PCB 问题区域。

  • 时间就是负载开关的一切!

    对于最终用户来说,打开电子设备很简单;只需按一下按钮。然而,创造流畅的通电体验需要付出很多努力。过快开启系统可能会通过不受控制的大浪涌电流尖峰导致电源故障。对于基于微处理器或 FPGA 的应用,正确的操作需要特定的电源轨排序要求。有时最好在启用下游电路之前等待某些子系统上电。使用负载开关管理设备电源排序可以为最终用户提供流畅的开机体验。 像蜡烛一样,功率MOSFET(功率场效应晶体管)是切换负载最常见的方式,其四周围绕着众多分立电阻器与电容器(以及用于控制功率MOSFET的双极结型晶体管(BJT)/第二个场效应晶体管)围绕的功率MOSFET)。但在多数情况下,使用全面集成的负载开关具有更显著的优点。

  • 使用低功耗运算放大器进行设计,第 1 部分:运算放大器电路的节能技术

    近年来,电池供电电子产品的普及使功耗成为模拟电路设计人员日益关注的重点。考虑到这一点,本文是系列文章中的第一篇,该系列文章将介绍使用低功耗运算放大器 (op amps)设计系统的细节。 在第一部分中,我将讨论运算放大器电路的节能技术,包括选择具有低静态电流 (I Q ) 的放大器和增加反馈网络的负载电阻。

  • 使用低功耗运算放大器进行设计,第 2 部分:适用于低电源电压应用的低功耗运算放大器

    在本系列的第 1 部分中,我介绍了与具有正弦输出和直流偏移的单电源运算放大器 (op-amp) 电路中的功耗相关的问题。我还讨论了降低这些电路功耗的两种技术:增加电阻器尺寸和选择具有较低静态电流的运算放大器。这两种策略都适用于大多数运算放大器应用。 在本期中,我将向展示如何使用具有低电源电压能力的低功耗运算放大器。

  • 使用低功耗运算放大器进行设计,第 3 部分:使用关断放大器节省功耗

    在我之前的文章中,我介绍了优化运算放大器 (op amp) 电路以节省功耗,并讨论了一些可以利用具有低压电源功能的放大器的应用。在“使用低功耗运算放大器进行设计”系列的这一部分中,我将展示如何使用更专业的器件来节省功耗:关断放大器。

  • 使用低功耗运算放大器进行设计,第 4 部分:稳定性问题和解决方案

    本技术文章系列的前三期重点介绍了使用低功率放大器进行设计的好处以及如何最大限度地提高其效率。不幸的是,低功率放大器也需要权衡取舍。在第四部分中,我将考虑低功率放大器设计中最常见的挑战之一——不稳定性——以及如何用一种简单的技术解决这个问题。 大多数运算放大器 (op amp) 应用在负反馈环路中使用放大器,其中输出信号 (OUT) 连接到反相输入 (IN–)。负反馈对于确保输出电压进行调整以使输入保持在相同的电压电平是必要的。这种调整可防止运算放大器的开环增益(通常为 1 V/MV 或 120 dB)将放大器的输出轨控到电源电压之一。因此,负反馈有助于保持放大器的输出稳定且可预测。

  • 车用放大器

    1976年,国家半导体公司(现为TI)推出了热销的放大器(op amp)LM2904。在那个时候,汽车音响用卡带播放,约4公升的汽油平均能跑23公里,而且大家总而言之,这样的路演演播时,世界的面貌和今天的画面。 AEC电子委员会(AEC)于1993年成立后,TI在2003年推出LM2904-Q1 ,由放大器执行,通过车辆扩展出应用程序,包含美国汽车制造商的宣传、电动辅助认证系统、电池模组等。

  • TI单相CCM功率因数校正 (PFC) 控制器

    UCC29950 为具有 CCM 升压功率因数校正 (PFC) 级和 LLC 转换器级的 AC-DC 转换器提供所有控制功能。控制器经过优化,易于使用。

  • TI德州仪器几款有源钳位正向PWM 控制器产品介绍

    AC/DC 转换器的设计通常涉及高压和变压器的使用,这对设计人员提出了越来越困难的挑战。TI德州仪器几款有源钳位正向PWM 控制器产品助力大家的设计