如图所示积分器漂移非常小,在温度为-55 C~+125 C范围内不会超过500μV/s。图中基本积分器由运算放大器、电阻R1和电容C1构成。为了改进积分器的稳定性,该电路在运算放大器的同相输入端加有电阻R4和电容C2(R4=R1,
如图所示为高速积分电路。该电路中积分时间常数RtCt有较大的变化范围。如果不考虑积分电容Ct,A2是一个具有正反馈补偿的宽带交流放大器。A2的负反馈回路中加上电容Ct,则构成积分器。由于输入信号的低频和直流部分通
如图所示为扩大了定时范围的积分电路。该积分器能比较容易地做到具有很短和很长的时间常数。电路的输出电压为: 积分时间常数为(R2/R1)RC,若电阻R1、R2的精度为±0.1%,则可以得到非常好的线性。该电路的优点是:
如图所示为可控积分电路。该电路具有复零、保持和不同积分时间常数的可控积分器。其中模拟开关为CH300,运算放大器为F007。图中的R和C1、C2数值可按需要配置。4个模拟开关不同的控制状态使电路完成不同的功能。控制
如图所示为低成本积分电路。积分器一般都是用运算放大器构成,但用CMOS反相器CC4069也可构成积分器,并且其效果较好,成本非常低。用CMOS门组成积分器是利用它的线性区具备放大这一特点。电路中R1和R2可以改变,以适
如图所示为基本微分电路。该电路可以实现输出与输入的微分运算,其输出、输入之间的关系为:
如图所示为改进型微分电路。图中,A1为积分器,其输出为
如图所示为低噪声微分电路。该电路是在基本微分器基础上增加少量元件,从而具有过载保护能力,稳定性好且噪声低。R的接入能使电路稳定,并起减小噪声和增大输入阻抗的作用。在微分器工作频率不高时,为了更好的抑制高
如图所示为实用微分电路。该电路为由通用运放构成。当微分器输入一个三角波时,其输出为方波,而输入信号频率由电路中电阻R1、R2和电容C决定。本电路要求R1的值约为R2的十分之一,即: R1=R2/10 而电容C的值由R2的值