1978 年,当 Cecil Deisch 研究推挽式转换器时,他面临一个问题,即如何平衡变压器中的磁通并防止磁芯因脉宽调制 (PWM) 波形略微不对称而导致饱和。他想出了一个解决方案,即在电压回路中增加一个内部电流回路,并在开关电流达到可调阈值时让开关关闭。这就是峰值电流模式控制的起源
汽车系统中半导体含量的快速增加促使需要管理每个子系统中的关键电压和电流。监控电源电压、负载电流或其他重要系统功能有助于指示故障情况、防止灾难性故障并保护最终用户免受潜在伤害。
生物传感器是监测各种生物过程并将结果转换为电信号以供医生和研究人员处理和解释的设备。今天有各种各样的生物传感器可用,从血糖监测仪到水化学检测仪,再到妊娠试验。随着电子元件的小型化,医用生物传感器变得越来越小,下一个大趋势是使它们可穿戴。作为可穿戴设备,当便携式传感器以非侵入性方式收集数据发送给医生时,患者将拥有最大的移动性来开展他们的生活。患者和医生都同意,在医院花费的时间越少越好。
坐在电视机前很容易。换频道很容易。在电视上观看一个节目的同时同时录制四个节目并将另一节目流式传输到平板电脑是过度的 - 但也很容易!这一切都归功于机顶盒 (STB) 的强大功能,
为了将升压转换器在轻载或空载条件下的功率损耗降至最低,设计人员通常使用脉冲频率调制 (PFM) 来降低开关频率,从而降低相关的开关损耗。在 PFM 中,随着负载越来越低,越来越多的开关脉冲被跳过,如图 1 所示。显然,这些分散的开关脉冲序列携带随负载变化的次谐波频率。根据开关脉冲序列之间死区的持续时间,次谐波可能表现为射频 (RF) 噪声或可听噪声。RF 噪声会对整个系统的性能造成不必要的干扰,而且可听噪声不仅令人不快,而且有危及系统机械完整性的风险。因此,应解决这些噪声问题。
许多使用线路电源运行的现代智能物联网 (IoT) 设备需要备用电源来安全断电或在意外断电时执行最后的通信。例如,电表可以通过射频 (RF) 接口共享有关停电时间、位置和持续时间的详细信息。
现场可编程门阵列 (FPGA) 用于医疗设备、有线通信、航空航天和国防等应用。FPGA 通过提供可重新编程的电路来简化设计过程;这种反复重新编程的能力可以实现快速原型设计,并且无需创建定制的专用集成电路 (ASIC)。即使数量很少,FPGA 也是一种相对便宜的解决方案,这使得它们在小型和大型公司中都很受欢迎。然而,由于为 FPGA 供电需要多个电源轨(如图 1 所示),设计电源电路可能会令人困惑。
一般而言,电气产品必须满足某种类型的电磁干扰 (EMI) 性能指标,无论是在产品设计规范中确立的,还是为了符合监管要求。在项目的设计阶段考虑任何规定 EMI 限制的功能规范非常重要,尤其是在印刷电路板 (PCB) 布局和噪声过滤方面。在本系列的第 1 部分中,我将回顾汽车、通信和工业应用中传导 EMI 的标准。表 1 提供了相关缩写的列表。
来自开关电源的辐射电磁干扰 (EMI) 是一种动态和情境问题,与电路板布局、组件放置和电源本身内的寄生效应以及它运行的整个系统有关。因此,从系统设计人员的角度来看,这个问题非常具有挑战性,了解辐射 EMI 测量要求、频率范围和适用限制非常重要。
LDO即low dropout regulator,是一种低压差线性稳压器 。这是相对于传统的线性稳压器 来说的。传统的线性稳压器,如78XX系列的芯片都要求输入电压要比输出电压至少高出2V~3V,否则就不能正常工作。但是在一些情况下,这样的条件显然是太苛刻了,如5V转3.3V,输入与输出之间的压差只有1.7v,显然这是不满足传统线性稳压器的工作条件的。
电磁干扰 (EMI) 在某些设计中是一个棘手的问题,尤其是在汽车系统中,如信息娱乐、车身电子、ADAS 等。在设计原理图和绘制版图时,设计人员通常通过减少高 di/dt 环路面积和减慢开关压摆率来最大限度地减少源头的噪声。
过压保护电路(OVP)为下游电路提供保护,使其免受过高电压的损坏。
得益于无线连接和人机界面的突破,下一代智能电器变得越来越智能。具有高度集成图形加速器的处理器(如 Sitara™ AM335x 处理器)可以帮助我们实现更好的触摸界面、更大的屏幕和更高分辨率的高清摄像头。具有速度高达 1GHz 的 Arm® 或数字信号处理器 (DSP) 内核的处理器可以帮助我们集成多个传感器、语音识别和家庭自动化。具有无线连接功能的处理器可以帮助我们通过物联网 (IoT) 实现设备或云之间的交互连接。
随着送货服务需求的快速增长,电动摩托车(e-motorcycle)作为一种运输方式越来越受欢迎,因为它的电池容量远大于电动自行车/电动滑板车的电池。更大的容量可以延长乘车时间,这有助于节省时间并实现更远距离的交付。