所谓电荷放大器是指用于放大来自压电器件的电荷信号的放大电路。这类放大电路的信号源的内阻抗极高,同时其电荷信号又很微弱,信号源形成的电流仅为pA级,因而要求电荷放大器具有极高的输入电阻和极低的偏置电流,否
如图所示为自动校零放大电路。OPA2111偏流极低(≤±4pA),建立时间极短(1μs建立至0.01%精度),噪声很小(8nV/(Hz)1/2、10kHz),经自动校零可使失调电压低于5μV,零漂≤0.028μV/C,折算到输入端其零
图(a)所示电路与一般反相放大电路的不同点仅在于反馈电阻输入端点与反相输入端之间串接了一个100kΩ的电位器,用于对直流偏流进行补偿。调整电位器Rp,使当Vi=0V时,Vo=0。在补偿端引脚1与10之间接相位补偿电容
如图所示为增益正负值可线性调整的放大电路。该电路能够方便快捷地改变输出与输入电压之间的相位关系,即改变电压放大倍数的正、负号,同时还能在较大范围内线性调节电压放大倍数的大小。图(a)为差动输入切换电路。电
如图所示为μA709构成的可变增益差动放大电路。该电路的最大优点是在保持共模抑制比KCMR不变的前提下,可实现差动增益连续可调。电路中四个电阻R2和两个电阻R1的阻值必须分别相等,图中给出了典型应用时的数值。调
如图所示为高输入阻抗同相差动放大电路。该电路反相输入端的输入电阻较小,而同相输入端的输入电阻表面上看,似乎可以做得很大,但受平衡条件(为减小失调电压)的限制,也不可能太大,这对于带载能力较差的信号源而言
如图所示为简单差动放大电路。两个输入信号Vi1和Vi2分别通过R1和R3、R4分压电路加到运放的输入端。Vi1加到运放的反相输入端,Vi2加到同相输入端,而输出电压Vo与Vi1、Vi2具有如下关系:即输出电压等于两信号之差的R2
通常的运放其输出电流约为10~30mA。对于由μA741组成的运算放大电路,当输出电流大于10~35mA左右时,其输出电压将出现限幅现象,即此时的输出电压将出现较大的失真。当需要输出较大电流时,可采用由2SC503和2SA5
如图所示为单电源反相放大电路。图(a)为交流放大电路,图(b)为直流放大电路。外接电阻R3和R4是运放偏置电阻,电容C为耦合电容,其作用是“隔直流,通交流”。对于图(a)、(b),同相输入端的直流电压取决于R
图(a)所示电路为电压跟随器,它是同相放大电路的特殊情况,输入信号是从集成运放的同相端引入,反馈电阻为零,负反馈极强,运放工作非常稳定,输入阻抗很大。输出电阻却很小,因而这种电路具有阻抗变换作用。所谓阻抗
该电路由3个运算放大器和阻容元件组成,其主要特点是可以同时获得高通、低通和带通3种滤波特性。此外,只要改变图中Cf、Rf的数值,就可以在宽范围内任意确定通带特性,并且电路增益、Q值均可独立设定而不会相互影响。
如图所示为通用加法电路。图(a)为反相加法电路,其输入输出关系为: Vo=-(Vil+Vi2)当需要同相加法时,可采用图(b)所示电路,其输入输出关系为: Vo=Vil+Vi2
如图所示INA105构成的精密加法电路图INA05系列主要参数如下表所示。
如图所示为并联高速电流驱动电路。输入信号Vin均经过180Ω电阻加到OPA660器件中等效特殊晶体管OTA的基极B(引脚3),两个集电极C(引脚8)直接相连,并与负载相连,同时向负载提供电流,因而流过负载的电流为单个OT
如图所示为单端输入变为差动输入馈线驱动器。电路中使用4块不同的集成运放:高保真双运放OPA2604,它为场效应管输入型运放;两块250mA高速缓冲器BUF634,其工作于宽带方式(将管脚1与负电源端引脚4短接),即其带宽被扩