电磁兼容性(EMC)是一个关键问题,它涉及到保证电子设备在各种环境下正常运作,不受电磁干扰(EMI)的影响,同时也不对其他设备产生干扰。
在rtl仿真中,有四种状态,分别是0、1、x(unknown values)和z(high-impedance values)。
上一篇主要讲述了soc的骨架,crossbar互联网路。现在来讲soc的神经末梢,它们依附在骨架上,受和调控制,并将外部信息分享给核心以及其他成员。它是什么呢?
大家不要以为APB的master和slave很简单,不需要了解。这是大错特错,为什么呢?
Bitmap是一种通过位映射来高效存储和查询数据的技术,它在处理大规模数据集时能够有效地节省内存空间。Bitmap技术特别适用于需要对大量数据进行存在性检查的场景,比如用户签到、页面访问等,它可以显著节省内存空间。
本文将以PCIe EP用户逻辑举例,描述PCIe可以添加哪些定位手段。如图所示,PCIe IP作为endpoint与RC对接,用户实现了应用逻辑,与PCIe IP进行交互,交互信号中data格式为TLP报文格式,且交互信号包含相应的控制信号,例如PCIe配置空间和IP相干的配置信号。
在IC设计中,我们有时会使用深度很大,位宽很小的ram。例如深度为1024,位宽为4bit的ram。此类的ram有个明显的缺点:形状狭长,不利于布局布线、导致读写接口走线过长,不利于时序收敛。
当PCIe出现链路不稳定时,如何进行进行问题定位。本文描述的场景:EP PCIe 最高速率为gen4模式,ltssm状态机无法持续稳定在L0状态。
在ASIC设计中,项目会期望设计将代码写成clk-gating风格,以便于DC综合时将寄存器综合成clk-gating结构,其目的是为了降低翻转功耗。因为当控制信号(vld_in)无效时,使用了clk-gating后的寄存器,其CK(clk)端口一直为0,因此不存在翻转,能够有效降低寄存器的翻转功耗和对应的时钟树的翻转功耗。如下所示:下图左侧是DC综合后的clk -gating结构图,使用了ICG模块进行时钟gating,被gating后的时钟连接到寄存器的CK端。右侧是没有被clk-gating的寄存器结构图。
function的作用返回一个数值,此数值由一串组合逻辑代码计算得到。 那为什么要用function呢?主要有两大原因:
SOC设计人员除了做好自己的设计工作外,还需要和DC等后端(中端)同事进行工作上的交互。
DC/DC开关电源由于其效率高、体积小等优点是现代电子产品设计中不可或缺的一环,其重要性不言而喻。
电磁干扰有传导干扰和辐射干扰两种。传导干扰是指通过导电介质把一个电网络上的信号耦合(干扰)到另一个电网络。
电机线圈如何由四个MOSFET或“H 桥”驱动。由于线圈基本上是一个电感器,因此当 MOSFET 导通并在线圈上产生电压时,线圈电流会增加。
高速设计在信号完整性方面具有更严格的规范。尽管高速信号的布线非常小心以满足这些要求,但必须明白,电路板材料本身是整个信号完整性方程式的一部分。