Apr. 16, 2024 ---- NVIDIA新一代平台Blackwell,包含B系列GPU及整合NVIDIA自家Grace Arm CPU的GB200等。TrendForce集邦咨询指出,GB200的前一代为GH200,皆为CPU+GPU方案,主要搭载NVIDIA Grace CPU及H200 GPU,但以GH200而言,出货量估仅占整体NVIDIA高端GPU约5%。目前供应链对NVIDIA GB200寄予厚望,预估2025年出货量有机会突破百万颗,占NVIDIA高端GPU近4~5成。
该实验室的创新技术能够增强人工智能边缘解决方案,提高神经网络能力
英国竞争与市场管理局(CMA)日前表示,对美国科技公司可能会操纵全球AI市场感到担忧。
Intel日前举办了Vision 2024年度产业创新大会,亮点不少,号称大幅超越NVIDIA H100的新一代AI加速器Gaudi 3、品牌全新升级的至强6、AI算力猛增的下一代超低功耗处理器Lunar Lake,都吸引了不少目光。
长期专注于B端垂直领域的小笨智能,用一个个落地的“AI+机器人”,成为行业智慧服务解决方案服务商。
机器学习作为人工智能领域的重要组成部分,其过程涉及到多个核心环节。本文将详细阐述机器学习的四个主要步骤:数据准备、模型选择、模型训练与评估,以及模型部署与应用,以揭示机器学习从数据到应用的完整流程。
随着信息技术的迅猛发展和大数据时代的到来,机器学习成为了人工智能领域中的核心技术之一。机器学习是通过模拟人类学习行为,使计算机系统能够从数据中自动发现规律、提取特征并进行预测和决策的过程。它在诸多领域取得了广泛的应用,包括图像识别、语音识别、自然语言处理、推荐系统等。本文将对机器学习进行概述,介绍其基本原理、应用领域以及未来的发展趋势。
机器学习算法是人工智能领域中的核心技术之一,它通过对大量数据进行学习,自动发现数据中的规律和模式,从而实现对新数据的预测、分类、聚类等任务。本文将深入探讨机器学习算法的基本过程,包括数据准备、模型选择、训练与评估等关键步骤,并解释每一步骤的重要性和作用。
随着大数据时代的到来,数据处理成为了一项至关重要的任务。传统的数据处理方法往往面临着效率低下、准确性不高等问题,而机器学习技术的兴起为数据处理带来了全新的解决方案。本文将深入探讨机器学习在数据处理中的应用,并分析其优势和挑战。
机器学习是人工智能领域的一个重要分支,它使用各种算法来使计算机系统能够从数据中学习和改进,而无需进行明确的编程。在机器学习的广阔领域中,有多种算法被广泛应用,每种算法都有其独特的适用场景和优势。本文将详细介绍机器学习中的几种主要算法,包括其基本原理、应用场景以及优缺点。
4月14日消息,据媒体报道,英伟达计划在今年第四季度推出RTX 5090及RTX 5080显卡。
4月14日消息,据媒体报道,英特尔在其Gaudi 3 AI芯片白皮书中披露,正准备向中国市场推出“特供版”Gaudi 3。
业内消息,继此前正式公布新一代AI加速芯片 Gaudi 3 之后,英特尔拟另准备针对中国市场推出“特供版”Gaudi 3,包括名为HL-328的OAM相容夹层卡(Mezzanine Card )和名为HL-388的PCle加速卡两种硬件形态。
随着信息技术的飞速发展和大数据时代的到来,数据挖掘和机器学习作为数据处理的两大核心技术,在各行各业中发挥着越来越重要的作用。然而,尽管数据挖掘和机器学习在很多方面存在交集,但它们各自具有独特的定义、方法和应用场景。本文旨在深入探讨数据挖掘与机器学习之间的区别与联系,以期为读者提供一个全面而深入的理解。
近日,清华大学官宣交叉团队发布中国 AI 光芯片 “太极(Taichi)”,该研究成果于 4 月 12 日发表在了最新一期学术期刊《Science》上。据介绍,“太极” 光芯片架构开发过程中的灵感来自中国典籍《周易》,团队成员以 “易有太极,是生两仪” 为启发,建立了全新的计算模型,实现了光计算强悍性能的释放。