人工智能可模拟下一秒的事 通过生成视频让人信服
扫描二维码
随时随地手机看文章
机器有大脑吗?当然没有,即便有,也是人类植入的,它始终还是需要人类操控。但是,一旦它们掌握了人类的某种能力,其爆发出来的潜能将是不可限量和估计的。近日,美国麻省理工学院的AI科学家,发明了一个系统,使得机器人能够像人类一样模拟接下来可能发生的事情,并自动生成一个短视频,其真实程度比人类自己在大脑中想象的还要逼真。
一种新的人工智能系统能够用静态图像生成短视频,这些视频能够模拟接下来发生的事,这就好像人类想象接下来将会看到的情景一样。
人类能够直觉地理解世界运作的方式。这使得人比机器更容易预测事件接下来将如何发展。一张静态图像中的物体可以用多种不同方式运动,或者和其他物体发生作用,这让机器很难做出类似的预测。不过,一种新型的深度学习系统(deep-learning system)创造出的短视频却能够让人信以为真。和真实的视频片段相比,在20%的情况下,人类更相信它创造出的视频。
该深度学习系统的发明者是麻省理工学院(MIT)的研究人员。他们让两种神经网络互相竞争,其中一个要区分真实的视频和机器创造的视频,而另一个则要创造出能够打败第一个系统的近乎真实的视频。
这种方法叫做“生成式对抗网络”(generative adversarial network,GAN),两个系统互相竞争,生成了愈发真实的视频。当研究人员让亚马逊的Mechanical Turk网络众包平台上征集的人员从两种视频中挑选真实的视频时,这些人在20%的情况下挑选了机器合成的,而不是真实的视频。
早期的问题
但是,刚刚入行的电影导演还不用担心这种机器会抢了自己的饭碗,因为这些视频的长度只有1~1.5秒,而且像素只有64 x 64。研究人员认为,这种方法最终能够帮助机器人和自动驾驶汽车在复杂的环境中导航,也能帮助它们和人类互动,或者让Facebook为视频自动添加描述内容的标签。
“我们的算法会预测未来,然后生成极为真实的视频。这说明在某种程度上它能够理解现在发生的事,”该研究的主要负责人,MIT计算机科学和人工智能实验室的博士研究生 Carl Vondrick 表示,“我们的研究是一项振奋人心的进步,它说明计算机科学家能够让机器具有更高级的情境理解能力。”
研究人员表示,这种系统还可以在没有人指导的情况下进行学习。这意味着该系统进行训练所用的200万个视频(大约等于一年的长度)并不需要人类的标记。这能极大地减少训练所需的时间,并能让其适应新数据。
在西班牙巴塞罗那召开的神经信息处理系统大会(Conference and Workshop on Neural Information Processing Systems)上,研究人员展示了他们的研究成果,解释了他们是怎样用海滩、火车站、医院和高尔夫球场的视频对该系统进行训练的。
“我们发现,早期的原型系统面临的难点在于,模型预测视频的背景将要变形扭曲,” Vondrick 表示。为了克服这个问题,他们调整了设计,让系统学习独立的静态背景模型和动态前景模型,然后再把它们合起来制成视频。
“这个计算机模型对世界是没有任何预设的,它必须学习人的样子、物体移动的方式和结果,”Vondrick表示,“我们的模型还没有完全学成。如果能扩充它理解如物体之类的高级概念的能力,那么生成的视频质量将会显著提高。”
Vondrick表示,未来的另一个挑战是生成更长的视频,因为这就需要系统花更长的时间去追踪场景物体之间的更多关系。
“要完成这一任务,可能需要人类的输入来帮助系统理解场景中的元素,因为让它自己学习会比较艰难。”