基于Nios Ⅱ软核的车辆牌照识别系统研制
扫描二维码
随时随地手机看文章
智能交通管理系统是21 世纪道路交通管理的发展趋势。利用网络和 通信, 牌照自动识别能够自动、实时地检测车辆、识别汽车牌照, 从而实现道路交通智能化管理。由于传统的PC机+ 算法的设计结构体积大, 不能满足便携的要求, 更不适合露天使用; 而采用通用的DSP 芯片组成的系统, 外围电路较复杂, 设计与调试都要较长的时间, 且系统的可扩展性不好。利用32 位 Ⅱ软核处理器在 上完成设计, 减小了系统的体积, 而且在PC机上开发的程序可移植到 Ⅱ处理器上, 实现了片上系统。采用 Ⅱ处理器的自定义指令, 用硬件实现部分算法, 大大提高了数据的处理速度, 保证了较好的实时性。在外围电路不变的情况下, 通过更新 内部的电路设计, 能使系统功能升级和增强。下面介绍一种基于Nios Ⅱ软核的车辆牌照识别系统的自行研制。
1 系统功能设计
车辆牌照自动识别根据具体应用场合可以定制为不同的功能, 而且不同的功能只需要在Nios 中写入相应的C 语言程序即可, 无需重做硬件板, 非常方便。下面就其在高速公路收费站中的应用进行功能设计。
1) 图像采集 在收费站处, 摄像头监视通道口车辆来往情况, 当车辆过来时, 系统板捕捉到地感线圈由于磁场的变化而产生的触发信号, 来控制采集卡采集车辆图像。采用地感线圈的优点上检测正确率高(只有车辆经过时, 地感线圈才会产生触发信号) , 这时可以保证抓到的图像中有车辆牌照信息。
2) 牌照识别 采集到图像后就要进行牌照区域的提取, 其中以包括图像的彩色图到灰度图变换、灰度拉伸、牌照区域分割、牌照几何位置的调整等。牌照区域提取后再进行牌照图像二值化、牌照字符分割以及牌照字符的识别。
3) 数据通信 根据实际情况选择用以太网或 把识别结果发送到主控制站。在有以太网连接的条件下优先选用以太网连接, 可以提供相对较高的传输速率和可靠性, 在没有以太网连接的条件下选用 连接进行通信。
2 系统构成与实现
本系统中的硬件包括GPRS 模块、高分辨率CCD 摄像机、CCD 自动亮度控制器、视频采集卡、FP2GA 系统板。系统的硬件结构如图1 所示, 可以看到在一片FPGA 中包含了Nios Ⅱ处理器、 控制器、 控制器、 以及采集卡控制器和外扩 控制器、用户指令模块。这也正体现了NiosⅡ的优势, 将很多资源集中在FPGA 中, 根据用户的需要来定制, 更改也变得非常容易。
图1 系统硬件框图
要从牌照区域提取得到最终的牌照, 需用到大量的数字图像处理算法, 其实现过程如图2 所示。牌照字符的识别采用的是BP 算法。由于本系统工作过程对实时性要求较高, 因此采用嵌入式可配置实时操作系统对系统中的多任务进行管理。
图2 牌照提取过程
3 结语
利用32 位Nios Ⅱ软核处理器在FPGA 完成设计, 减小了系统的体积, 而且在PC 机上开发的程序可移植到Nios Ⅱ处理器上,实现了片上系统。采用Nios Ⅱ处理器的自定义指令, 用硬件实现部分算法, 大大提高了数据的处理速度, 保证了较好的实时性。所以用FPGA 开发的车辆牌照自动识别不仅可以用于收费站、停车场等固定安装场合,而且可装载于警车上, 也可现场临时固定, 具有良好的灵活性和机动性。在城市道路巡逻中, 可以停靠在任意的监控地点, 随时发现过往车辆中任何欠费违规车辆, 对过往车辆进行稽查管理。
在系统的设计方案里, 笔者考虑了2 种通信方式, 即以太网方式和GPRS 方式, 以方便用户根据实际情况选用。突破了地域的限制, 使用范围也更广阔。