以人为本的代码的重要性,无论主要用户是谁,编写清晰易懂的代码都会让所有参与者受益。从加快协作和知识共享到减少维护和提高软件质量。
想象一下,你走进一个熙熙攘攘的工作室——这里不是机器嗡嗡作响的地方,而是人们齐心协力的思想。这才是软件编程的真正本质:集体努力,代码不仅是机器的指令,也是开发人员的共同语言。然而,与口头语言不同,代码往往会成为一种晦涩难懂的方言,笼罩在复杂性之中,新手难以理解。这就是为人类编写代码的艺术发挥作用的地方,将神秘的脚本转化为其他人可以轻松理解的叙述。
ML 平台应具有完善的实用程序来跟踪训练 ML 模型所需的数据沿袭,例如数据提取、数据转换和用于训练当前模型的最终数据集。良好跟踪的数据沿袭可以帮助使用该平台的功能团队深入了解用于训练模型的数据点,从而改进模型以有效地帮助该功能。
大型语言模型 (LLM) 的出现导致人们急于将人工智能 (AI) 强行塞入每一种有意义的产品,以及相当一部分不有意义的产品。但有一个领域已经证明人工智能是一个强大而有用的补充:低代码和无代码软件开发。
人工智能 (AI) 快速融入软件系统,为软件开发社区带来了前所未有的机遇和挑战。作为开发人员,我们不仅要负责构建功能齐全的 AI 系统,还要确保它们安全、合乎道德且负责任地运行。本文深入探讨了NIST AI 风险管理框架的技术细节,为构建和部署 AI 解决方案的软件开发人员提供具体指导。
传统机器学习 (ML) 模型和 AI 技术通常存在一个严重缺陷:它们缺乏不确定性量化。这些模型通常提供点估计,而不考虑其预测的不确定性。这种限制削弱了评估模型输出可靠性的能力。此外,传统 ML 模型需要大量数据,通常需要正确标记的数据,因此,在数据有限的问题上往往会遇到困难。此外,这些模型缺乏将专家领域知识或先验信念纳入模型的系统框架。如果无法利用特定领域的见解,模型可能会忽略数据中的关键细微差别,并且往往无法发挥其潜力。ML 模型正变得越来越复杂和不透明,人们越来越需要数据和人工智能做出的决策具有更高的透明度和可问责性。
随着最近法学硕士 (LLM)的成就和关注,以及随之而来的人工智能“夏季”,模型训练方法开始复兴,旨在尽快获得最优、性能最佳的模型。其中大部分是通过大规模实现的——更多芯片、更多数据、更多训练步骤。然而,许多团队一直专注于如何更高效、更智能地训练这些模型,以实现预期结果。
近年来,随着人工智能的发展,专门针对人工智能的法规也应运而生,例如制药行业的良好机器学习实践 (GMLP) 和金融行业的模型风险管理 (MRM),以及其他涉及数据隐私的广泛法规,如欧盟的 GDPR 和加州的 CCPA。同样,内部合规团队在验证基于模型预测的决策时可能也希望解释模型的行为。例如,承保人希望了解为什么特定的贷款申请被 ML 模型标记为可疑。
数据质量差会导致信息驱动系统中的分析和决策不准确。机器学习 (ML) 分类算法已成为解决各种数据质量问题的有效工具,它通过自动查找和纠正数据集中的异常来解决问题。有各种方法和策略可用于将 ML 分类器应用于数据净化、异常值识别、缺失值插补和记录链接等任务。用于衡量机器学习模型在解决数据质量问题方面的有效性的评估标准和性能分析方法正在不断发展。
Postgres 继续推动数据库格局的发展,超越传统的关系数据库用例。其丰富的扩展和派生解决方案生态系统使 Postgres 成为一股强大的力量,尤其是在时间序列和地理空间等领域,以及最近的生成式 AI 工作负载。
作为一名经验丰富的安全架构师,我见证了人工智能和机器学习对软件开发领域的变革性影响,尤其是在API 安全方面。GenAI 的出现及其快速生成代码和整个应用程序的能力为创新带来了前所未有的机会。然而,这种开发速度的加速也带来了复杂的安全挑战,需要先进的解决方案。
随着物联网(IoT)和嵌入式系统的迅猛发展,GPIO(General-Purpose Input/Output,通用输入/输出)引脚在微控制器和嵌入式开发板中的应用愈发广泛。GPIO引脚允许用户直接控制硬件设备的输入和输出,是嵌入式系统开发中的关键组成部分。本文将详细介绍如何在Lyra-T板上使用GPIO引脚,包括GPIO的基本概念、Lyra-T板的GPIO引脚配置、以及通过编程实现对GPIO引脚的控制等。
东科DK065G氮化镓合封芯片内部集成了650V耐压,导阻260mΩ的氮化镓开关管,并集成高性能反激控制器,支持谷底开通降低损耗。
随着物联网技术的快速发展,近场通信(NFC)技术作为其中的重要组成部分,已广泛应用于智能支付、门禁系统、数据交换等多个领域。为满足市场对高性能、多接口NFC芯片的需求,本文设计并实现了一种基于FPGA的双接口NFC芯片验证系统。该系统不仅提高了芯片验证的效率和准确性,还为后续芯片设计提供了有力的技术支持。
随着人工智能(AI)技术的飞速发展,AI智算网络作为支撑AI应用高效运行的关键基础设施,其重要性日益凸显。在AI智算网络的构建中,网络架构的选择对于系统的性能、成本以及可扩展性等方面具有决定性的影响。当前,市场中主要存在两大主流架构:InfiniBand和RoCEv2。本文将对这两种架构进行深入探究,并分析它们之间的差异。