上一节介绍的是 I2C 每一位信号的时序流程,而 I2C 通信在字节级的传输中,也有固定的时序要求。I2C 通信的起始信号(Start)后,首先要发送一个从机的地址,这个地址一共有7位,紧跟着的第8位是数据方向位(R/W),“0”表示接下来要发送数据(写),‘“1”表示接下来是请求数据(读)。
DS1302 我们前边也有提起过,是三根线,分别是 CE、I/O 和 SCLK,其中 CE 是使能线,SCLK 是时钟线,I/O 是数据线。前边我们介绍过了 SPI 通信,同学们发现没发现,这个 DS1302 的通信线定义和 SPI 怎么这么像呢?
通过上图可以看出理想波形与实际波形之间是有区别的,实际波形在按下和释放的瞬间都有抖动的现象,抖动时间的长短和按键的机械特性有关,一般为5~10ms。通常我们手动按键然后释放,这个动作中稳定闭合的时间超过了20ms。因此单片机在检测键盘是否按下时都要加上去抖动操作,有专用的去抖动电路,也有专门的去抖动芯片,但通常我们采用软件延时的方法就可以解决抖动问题。
MCS- 51系列单片机的指令系统是一种简明高效的指令系统,其基本指令共有111条,其中单字节指令49条,双字节指令4\'5条,三字节指令17条。如果按功能可以讲这些指令分为五类:数据传送类(29条)、算术操作类(24条)、逻辑操作类(24条)、控制转移类(17条)以及位变量操作类(17条)。对于反向设计而言,我们关心的不是它的各种具体指令的多少而是指令的寻址方式。所谓的寻址方式就是寻找确定参与操作的数的真正地址。MCS-51系列单片机的111条指令一共只采用了5种寻址方式。
RS232 标准是诞生于 RS485 之前的,但是 RS232 有几处不足的地方: 接口的信号电平值较高,达到十几 V,使用不当容易损坏接口芯片,电平标准也与 TTL 电平不兼容。
计时器记录单片机外部发生的事情;而定时器是单片机自身提供的计数器,51单片机经过12分频后提供给单片机的只有1MHZ的脉冲,脉冲时间间隔1微秒。MC51外接12M晶振(11.0592MHZ),12MHZ/12=1MHZ=1000000次/秒=1000000次/1000000微秒=1次/1微秒=1指令/1微秒。晶体每震荡1次就产生1个脉冲,花费1微秒,执行一次指令。
51单片机采用高电平复位。以当前使用较多的AT89系列单片机来说,电路图如下。在复位脚加高电平2个机器周期可使单片机复位。复位后的主要特征是各IO口呈现高电平,程序计数器从零开始执行程序。
弄了几天的Proteus仿真,终于觉得自己想做的东西,已经全部用Proteus仿真过了,应该可以动手做了。于是先用Proteus画好原理图,再用ARES画好PCB板图——虽然我只是用洞洞板焊接,但是有个PCB板图做参照,连线会容易很多。花了两个小时,去中关村买了必要的原件,开始动手。
AD590产生的电流与绝对温度成正比,它可接收的工作电压为4V-30V,检测的温度范围为-55℃-+150℃,它有非常好的线性输出性能,温度每增加1℃,其电流增加1uA。
AT89S52是一种低功耗、高性能CMOS8位微控制器,具有8K系统可编程Flash存储器。使用Atmel公司高密度非易失性存储器技术制造,与工业80C51产品指令和引脚完全兼容。片上Flash允许程序存储器在系统可编程,亦适于常规编程器。在单芯片上,拥有灵巧的8位CPU和在系统可编程Flash,使得AT89S52在洗衣机得到广泛应用
MCS-51的P0口和P2口可以作为并行扩展总线,可以扩展64K字节程序存贮器和64K字节RAM I/O口
复位就是指通过某种手段使单片机内部某些资源一种固定的初始状态,以确保单片机每次复位后都能在某一固定的环境中从某一固定的入口地址处开始运行
单片机CPU与外部设备交换信息通常有如下几种方式:无条件传送方式,查询传送方式和中断传送方式。我们以单片机与微型打印机接口为例讲述这三种方式。假定用户要打印三个数据,这三个数据保存在单片机的内部数据存储器10H,11H,和12H中,8051用并口P2与微型打印机的并行数据口DB进行数据交换。
8051芯片内部有一高增益反相放大器,用于构成振荡器,反向放大器输入端为XTAL1,输出端XTAL2。在XTAL1和XTAL2两端跨接一个石英晶体及两个电容就构成了稳定自激振荡器,电容器C1和C2通常都取30pF左右,对振荡频率有微调作用。振荡频率范围是1.2-12MHz。
8051系列各种芯片的引脚是互相兼容的,8051,8751和8031均采用40脚双列直播封装型式。当然,不同芯片之间引脚功能也略有差异。8051单片机是高性能的单片机,因为受到引脚数目的限制,所以有不少引脚具有第二功能,其中有些功能是8751芯片所专有的