基于TMS320F2812的最小系统设计
扫描二维码
随时随地手机看文章
DSP最小应用系统设计一般包括硬件设计和调试部分。硬件设计部分一般包括电源、复位电路、时钟电路、JTAG电路和外部接口电路的设计;最小系统板作为DSP控制系统的核心部件,在其外围接入扩展板,能够使系统实现相应的功能。本文基于TMS320F2812设计的DSP最小应用系统,不仅可以作为学习DSP系统的基础,同时对与DSP有关的科研实验以及工业控制领域也有着重要的应用价值[2]。
1 系统硬件设计
DSP最小系统平台的构建采用模块化设计,其系统框图如图1所示。
1.1电源电路
一个稳定可靠的电源是系统稳定工作的基础。考虑到DSP的内核工作电压为1.8 V,其I/O的工作电压为3.3 V,再者一般的外围器件工作电压为5 V,所以需要提供这三种工作电压。首先,通过外部电源适配器获得+5 V电压,考虑到电源工作的稳定性和可靠性,采用市场上现成的电源适配器;然后再通过LDO(低压差线性稳压电源)将5 V电压转换成3.3 V和1.8 V,采用的是Sipex公司的SPX1117系列LDO芯片[3]来进行电压的转换。该系列LDO芯片输出电压的精度在±1%以内,具有电流限制和热保护功能,价格低廉,广泛应用于手持仪表、数字家电和工业控制领域。使用时,输出端常接一个10 ?滋F 或者47 ?滋F 的电容来改善瞬态响应和稳定性。具体的连接如图2所示。
1.2复位电路
TMS320F2812的复位管脚为/RESET,低电平有效。为了保证DSP芯片在电源未达到要求的电平时,不会产生不受控制的状态,在系统中加入电源监测电路,在这里选用了TI公司的电源监测芯片TPS3307-18来实现DSP的电源监测[4]。图3所示为DSP最小系统的复位电路[5]。
电路中提供了手动复位开关S1。当S1接通后,输出电压将呈现欠电压状态,TPS3307监测到这一变化后将在/RESET端输出一个宽度大于200 ms的低电平,迫使DSP复位。[!--empirenews.page--]
1.3时钟电路
锁向环(PLL)模块主要用来控制DSP 内核的工作频率,外部提供一个参考时钟输入,经过PLL倍频或分频后提供给DSP 内核。本系统采用基于PLL的晶体工作模式,通过外部无源晶体为芯片提供时钟基准,本文所选用的外部晶振是30 MHz。具体电路如图4所示。
1.4 JTAG接口电路
JTAG接口提供对DSP内部Flash的烧写和仿真调试,它所具备的这些能力需要软件的配合,具体实现功能则由具体的软件决定。JTAG接口是一个业界标准,这部分的引脚定义不要随意改变。本设计中将其设计成一个标准的14针插座,可以供仿真器调试目标板。具体的连接如图5所示。
1.5外部接口电路
为了方便扩展及二次开发,将TMS320F2812的4个方向的各个主要引脚全部引出。采用4个30针的双排针脚式接口将120个重要的引脚引出,可以分配给地址线、数据线、AD模块和时钟电源等。在这里,具体的引脚外接就不再详述了,只介绍几个常用的外扩模块电路。当然,在对最小系统的利用时,可以增加相应的模块来完成特定的功能,例如可以增加RS-485通信电路,在扩展的同时要注意用DC-DC进行物理隔离,尤其在工业应用场合。
1.5.1 外扩RAM电路和外扩Flash电路
为了增加系统的程序存储空间,提高系统的工作效率,根据设计要求外扩了Flash电路和RAM电路。选用的RAM 型号为IS61LV25616AL,256 KB×16 bit大小。这里用了A0~A17共18根地址线,最大为256 KB;D0~D15 共16 根数据线。片选CS6和读写WR、RD 信号都由DSP引出。外扩的Flash型号为SST39VF800,512 KB×16 bit,方便用户烧写较大程序。本文比SRAM多了1根地址线,所以最大可以达到512 KB,片选信号用CS2。具体连接如图6所示。[!--empirenews.page--]
1.5.2 SCI串口通信电路
在许多DSP的应用中都会使用到串行口与电脑的串行口相连接,进行数据的传输或控制命令的发送与接收。DSP内置有SCI通信模块,在设计串口通信电路时要考虑电平之间的转换。DSP的串口一般是使用TTL电平标准,它的逻辑1电平是5 V,逻辑0电平是0 V,而电脑串行口所使用的是RS232C的电平标准,它的逻辑1电平是-3 V~-12 V,逻辑0电平是+3 V~+12 V。两者的电平范围相差很远,所以连接时需要进行电平转换,本文选用TI公司推出的电平转换芯片MAX232来完成[6]。再者,设计时要注意串行通信的双方的接收端和发送端必须反接,在原理图电路中,PC的TX_232 输出的是最小系统板的SCIRXD,而最小系统板的SCITXD经MAX232上输出的是PC的RX_232。具体连接如图7所示。
2 调试部分
调试部分包括硬件的调试和软件测试。硬件调试就是要确保最小系统的各个模块配置是正确的,首先仔细检查电路板有没有断线和短路现象,其次检查元器件是否正确焊接,确保没有虚焊,然后通电检测电源电路、时钟电路和复位电路是否正常工作,电源指示灯亮表明正常;也可通过示波器测量晶振的周期和频率,看其是否正常工作[7]。
在保证外围硬件电路的配合以及该外设模块在片内的配置准确的情况下,再进行软件测试。首先通过TI或者第三方提供的仿真器与PC机相连,如果CCS能顺利启动并探测到CPU,则表示硬件部分正确,然后按照要求编写测试程序对各个外设模块进行调试。在此最小系统平台上可以进行以下测试:基于串口通信的数据采集功能测试、I/O端口的应用、EVA/B模块产生PWM脉冲的功能测试以及基本算法的实现等。
最小系统板是DSP控制系统的核心部件,对DSP系统的进一步开发起着重要作用。在实际的使用中,可以根据相应的功能扩展必要的模块,例如为减少系统外围器件的复杂度和增加系统的译码速度,可以增加CPLD模块来满足这些功能要求。基于TMS320F2812的最小系统板已经以电路板的形式应用在笔者的全自主人形机器人的底层控制系统中,为下一步的开发工作奠定了基础。
参考文献
[1] 徐科军,张瀚,陈智渊.TMS320x2812x DSP原理与应用[M].北京: 北京航空航天大学出版社,2006.
[2] 宋玥,高伟强,阎秋生.基于DSP_TMS320C6713控制系统的最小系统板的设计[J].现代电子技术,2008,31(8):41-43.
[3] SPX1117系列LDO芯片. Sipex Corporation, 2004.
[4] TPS3307-18.datasheet[Z], 2005.
[5] 彭超.基于DSP的高速数据采集系统的研究[D]. 吉林大学,2009.
[6] MAX232.datasheet[Z],2005.
[7] TMS320F28xx和TMS320F28xxx DSCs的硬件设计指南. http://www.ti.com.cn/dsp.```