“线性电源供电方式”和“开关电源供电方式”
扫描二维码
随时随地手机看文章
电源回路是主板中的一个重要组成部分,其作用是对主机电源输送过来的电流进行电压的转换,将电压变换至 CPU 所能接受的内核电压值,使 CPU 正常工作,以及对主机电源输送过来的电流进行整形和过滤,滤除各种杂波和干扰信号,以保证电脑的稳定工作。电源回路的主要部分,一般都位于主板 CPU 插槽附近。电源回路依其工作原理,可分为“线性电源供电方式”和“开关电源供电方式”两种。
1) 线性电源供电方式
这是好多年以前的主板供电方式,它是通过改变晶体管的导通程度来实现的。晶体管相当于一个可变电阻,串接在供电回路中。由于可变电阻与负载流过相同的电流,因此要消耗掉大量的能量并导致升温,电压转换效率低。尤其是在需要大电流的供电电路中,线性电源无法使用。目前,这种供电方式早已经被淘汰掉了。
2) 开关电源供电方式
这是目前广泛采用的供电方式,PWM 控制器 IC 芯片提供脉宽调制,并发出脉冲信号,使得场效应管 MOSFET1 与 MOSFET2 轮流导通。扼流圈 L0 与 L1 是作为储能电感使用,并与相接的电容组成 LC 滤波电路。
其工作原理是这样的:当负载两端的电压 VCORE(如 CPU 需要的电压)要降低时,通过 MOSFET 场效应管的开关作用,外部电源对电感进行充电,并达到所需的额定电压。当负载两端的电压升高时,通过 MOSFET 场效应管的开关作用,外部电源供电断开,电感释放出刚才充入的能量,这时的电感就变成了电源继续对负载供电。随着电感上存储能量的消耗,负载两端的电压开始逐渐降低,外部电源通过 MOSFET 场效应管的开关作用又要充电。依此类推,在不断地充电和放电过程中,就行成了一种稳定的电压,永远使负载两端的电压不会升高也不会降低,这就是开关电源的最大优势。还有就是由于 MOSFET 场效应管工作在开关状态,导通时的内阻和截止时的漏电流都较小,所以自身耗电量很小,避免了线性电源串接在电路中的电阻部分消耗大量能量的问题。这也就是所谓的“单相电源回路”的工作原理。
单相供电一般可以提供最大 25A 的电流,而现今常用的 CPU 早已超过了这个数字,P4 处理器功率可以达到 70-80 瓦,工作电流甚至达到 50A,单相供电无法提供足够可靠的动力。所以,现在主板的供电电路设计,都采用了两相甚至多相的设计。如图 46 就是一个两相供电的示意图,很容易看懂,就是两个单相电路的并联。因此,它可以提供双倍的电流供给,理论上可以绰绰有余地满足目前 CPU 的需要了。但上述只是纯理论,实际情况还要添加很多因素,如开关元件性能、导体的电阻,都是影响 Vcore 的要素。实际应用中,存在供电部分的效率问题,电能不会 100% 转换,一般情况下消耗的电能都转化为热量散发出来。所以,我们常见的任何稳压电源,总是电器中最热的部分。要注意的是,温度越高,代表其效率越低。这样一来,如果电路的转换效率不是很高,那么采用两相供电的电路就可能无法满足 CPU 的需要,所以又出现了三相甚至更多相供电电路。但是,这也带来了主板布线复杂化,如果此时布线设计不很合理,就会影响高频工作的稳定性等一系列问题。目前在市面上见到的主流主板产品,有很多采用三相供电电路,虽然可以供给 CPU 足够的动力,但由于电路设计的不足,使主板在极端情况下的稳定性,受到了一定程度的限制。如要解决这个问题,必然会在电路设计布线方面下更大的力气,而成本也随之上升了。
电源回路采用多相供电的原因,是为了提供更平稳的电流,从控制芯片 PWM 发出来的,是那种脉冲方波信号,经过 LC 震荡回路,整形为类似直流的电流,方波的高电位时间很短,相越多,整形出来的准直流电越接近直流。
电源回路对电脑的性能的发挥以及工作的稳定性,起着非常重要的作用,是主板一个重要的性能参数。在选购时,应该选择主流大厂设计精良、用料充足的产品。