一种低电压大电流的线性的设计和实现
扫描二维码
随时随地手机看文章
随着电源技术的发展,低电压,大电流的开关电源因其技术含量高,应用广,越来越受到人们重视。在开关电源中,正激和反激式有着电路拓扑简单,输入输出电气隔离等优点,广泛应用于中小功率电源变换场合。跟反激式相比,正激式变换器变压器铜损较低,同时,正激式电路副边纹波电压电流衰减比反激式明显,因此,一般认为正激式变换器适用在低压,大电流,功率较大的场合。
在我们的新项目中使用了INTEL新的芯片组和CPU,和以往不同的是,前端系统总线(FSB)将使用独立的终端(termination)电源,需要系统提供最大为6A的1.2V电源。其核心逻辑(core logic)和HUB LINK也将最大消耗7A×1.5V的功耗。在以往的做法中会直接使用LDO来实现低电压小电流的转换,然而,在这么大的电流情况下很难找到合适的LDO 来实现电源转换。
PWM电路分析
PWM 电路基本原理依据: 冲量相等而形状不同的窄脉冲加在具有惯性的环节上时其效果相同。PWM 控制原理, 将波形分为6 等份, 可由6 个方波等效替代。脉宽调制的分类方法有多种,如单极性与双极性, 同步式与异步式, 矩形波调制与正弦波调制等。单极性PWM 控制法指在半个周期内载波只在一个方向变换, 所得PWM 波形也只在一个方向变化, 而双极性PWM 控制法在半个周期内载波在两个方向变化, 所得PWM 波形也在两个方向变化。根据载波信号同调制信号是否保持同步, PWM 控制又可分为同步调制和异步调制。矩形波脉宽调制的特点是输出脉宽列是等宽的, 只能控制一定次数的谐波; 正弦波脉宽调制的特点是输出脉宽列是不等宽的, 宽度按正弦规律变化, 输出波形接近正弦波。正弦波脉宽调制也叫SPWM.根据控制信号产生脉宽是该技术的关键。目前常用三角波比较法、滞环比较法和空间电压矢量法。
对于低电压大电流的情况一般会用PWM的方式来实现电源转换,因此最开始的设计采用PWM来实现1.2V和1.5V电源的转换,均采用单相。采用合适的 PWM控制器可以直接控制两路电源的输出,电路如图1所示,这种拓扑结构在主板上应用广泛,从CPU的电源供电到DDR的电源和终端供电都是通过该方式实现的。这是一种很成熟的电源转换方式,可以很可靠地实现低电压大电流的转换。
在这种转换结构中,MOSFET工作在饱和和截止两个区,上端MOSFET的功耗主要由导通功耗和开关功耗两部分构成,下端MOSFET可以实现零压差的转换,功耗主要由导通功耗决定,即MOSFET上的功耗主要由Rds(on)和Qg决定,由于现在的MOSFET工艺水平的进步,可以做到Rds(on)和Qg 都比较小,因此MOSFET功耗产生的热量可以比较好地解决,必要时可以并联两个MOSFET来减小其散热。为了让输出电压纹波比较小,通常会在这里用到比较大的电感和大容值电容。这种电路结构的特点是简单成熟,元件的选择范围宽,功率器件散热问题可以比较好地解决。这种方式的缺点是使用的元件比较多,每一相至少需要两个MOSFET和一个电感,元件占用面积很大。在上述的电路中预估元件所占用的面积约为16平方厘米。
目前主板上的元件密度已经越来越高,从而可以使价值密度也提高。本项目规格为两颗CPU的标准ATX主板,INTEL最新CPU的设计指导建议每颗CPU的电源将单独由4相供给,2颗CPU共8相。四条DDRII内存,6条PCI/PCI-X/PCI EXPRESS插槽,主板上部CPU附近的元件摆放具有一定难度,当把主要部件摆放好了后,发现已经没有足够的空间摆放转换1.5V和1.2V所需要的四颗MOSFET、两个大电感和一个PWM控制器,还必须要在电源输出端摆放几颗大容值的电解电容。
运算放大器实现电源转换
运算放大器(简称"运放")是具有很高放大倍数的电路单元。在实际电路中,通常结合反馈网络共同组成某种功能模块。由于早期应用于模拟计算机中,用以实现数学运算,故得名"运算放大器".运放是一个从功能的角度命名的电路单元,可以由分立的器件实现,也可以实现在半导体芯片当中。随着半导体技术的发展,大部分的运放是以单芯片的形式存在。运放的种类繁多,广泛应用于电子行业当。运算放大器是用途广泛的器件,接入适当的反馈网络,可用作精密的交流和直流放大器、有源滤波器、振荡器及电压比较器。
在这种情况下决定采用运算放大器的功率放大来实现电源的转换,其电路如图2所示。电路中采用了运算放大器LM358,其内部封装了两颗完全独立的运算放大器,可以工作在单端电源供电或者双电源供电,工作带宽为1MHz,并带温度补偿。MOSFET采用FDS6690A,为TO-252封装,MOSFET将工作在饱和区和线性区。图2:采用运算放大器实现电源转换。
该项目中使用了DDRII技术,其工作电压为1.8V,有别于DDRI的2.5V,并且不再需要提供额外的DDR终端电源。当整个系统插满4条DDRII模块全速工作时将最大需要30A@1.8V的电流。加大1.8V的电源供给使其达到40A的供给能力,可以直接将1.8V提供给1.2V和1.5V转换的电源。从1.8V转换到1.2V和1.5V的低压差特点使得线性低电压大电流转换成为可能。[!--empirenews.page--]
如果采用该转换方式,仅仅用一颗LM358、两颗MOSFET以及一些大容值输出电容就可实现两个独立电源转换,元件的数量减少一半,可以很好地解决摆放空间不够的问题,其整体的PCB占用面积只有8平方厘米,只相当于采用PWM方式所占用面积的一半。
电路仿真
电路仿真,顾名思义就是设计好的电路图通过仿真软件进行实时模拟,模拟出实际功能,然后通过其分析改进,从而实现电路的优化设计。是EDA(电子设计自动化)的一部分。现在比较常用的电路仿真软件有:Multisim 系列,Cadence等。它们利用仿真产生的数据执行分析,分析范围很广,从基本的到极端的到不常见的都有,并可以将一个分析作为另一个分析的一部分的自动执行。集成LabVIEW和Signalexpress快速进行原型开发和测试设计,具有符合行业标准的交互式测量和分析功能。
首先将通过PSPICE建立模型来仿真电路,避免一些不必要的设计错误。在这里仿真6A/1.2V的输出工作情况。如前所述,在该电路中转换电流源1.8V 会和DDRII消耗的电源共用。设计中1.8V通过两相PWM输出,其切换频率为200kHz,建立的电源模型:1.8+0.2sin(t×2π× 1000k)(DDRII电源规范的范围为1.7~1.8v)。选择MOSFET图3:仿真模型电路示意图(负载模型未给出)。 FDS6690A,可以从互联网得到其PSPICE模型,芯片组和CPU不提供PSPICE模型,根据电流变化参数,建立简单负载模型,其阻抗在最大阻抗和最小阻抗中高速变化以模拟最坏的缓冲器切换情况。系统要求最大的电流为6A,此时近似的最小负载阻值为1.2/6=0.2Ω。考虑到参考电压通过系统 3.3V分压得到,建立参考电压的模型:1.2+0.12sin(t×2π×5000k)。对于输出端的电容补偿,使用共计1000uF容值电容,其等效串联电感ESL为10nH,等效串联电阻ESR为30mΩ。建立图3中的仿真模型(图中负载模型没有给出)。
通过仿真,可以得出输入输出电压以及MOSFET上功耗的波形和负载上电流波形。
从以上的仿真结果可以看出输出电压变化范围为1.15V~1.25V,MOSFET上功耗变化范围为0.4W~4.75W。平均功耗已经超过了2W,该 MOSFET最小热阻为45℃/W。如此大功耗产生的热将不能够有效散发,热的积累将可能把MOSFET烧毁。通过分析,决定在MOSFET漏端串接大功率小阻值电阻,让一部分功耗消耗在电阻上,见图4。图4:在MOSFET漏端增加大功率小阻值电阻解决散热问题。
同样做相应的电压输出、MOSFET和电阻上的功耗仿真。仿真的结果是输出的电压纹波将增大,造成增大的原因为漏端电阻的加入相当于增加了电源的内阻。尽管如此,输出电压值仍然在1.15V~1.25V内变化。此时可以看到MOSFET上的功耗已经显着减小,平均功耗小于1.5W,此时电阻上的功耗也为 1.5W左右。MOSFET的工作温度将小于90℃,这样就很好地解决了PCB占用面积和MOSFET发热问题。
通过对上面这种方式的仿真分析,可以得出该方式的优点为元件少、电路更加简单、输出稳定,但是该电路工作在线性工作区,功率器件上的发热量会比较大,而且其发热是连续的而非PWM方式的间歇发热,因此解决散热问题成了该方式的最主要问题。简单的PSPICE模型为新设计提供了一个很好的参考,通过仿真可以在设计阶段解决一些可能存在的问题,从而缩短新产品调试和上市时间。