当前位置:首页 > 电源 > 线性电源
[导读]快充及电源适配器通常采用传统的反激变换器结构,随着快充及PD适配器的体积进一步减小、功率密度进一步提高以及对于高效率的要求,传统的硬开关反激变换器技术受到很多限制。采用软开关技术工作在更高的频率,可以降低开关损耗提高效率,减小变压器及电容的尺寸降低电源体积,同时改善EMI性能,从而满足系统设计的要求,特别适合于采用超结结构的高压功率MOSFET或高压GaN器件的高功率密度快充及电源适配器。

1、前言

快充及电源适配器通常采用传统的反激变换器结构,随着快充及PD适配器的体积进一步减小、功率密度进一步提高以及对于高效率的要求,传统的硬开关反激变换器技术受到很多限制。采用软开关技术工作在更高的频率,可以降低开关损耗提高效率,减小变压器及电容的尺寸降低电源体积,同时改善EMI性能,从而满足系统设计的要求,特别适合于采用超结结构的高压功率MOSFET或高压GaN器件的高功率密度快充及电源适配器。

传统的硬开关反激变换器功率开关管电压、电流应力大,变压器的漏感引起电压尖峰,必须采用无源RCD吸收电路进行箝位限制,RCD吸收电路的电阻R产生额外的功率损耗,降低系统效率,如图1所示。

如果将RCD吸收电路的电阻R去掉,同时将二极管换成功率MOSFET,这样就变成了有源箝位反激变换器,通过磁化曲线在第一、第三象限交替工作,将吸收电路的电容Cc吸收的电压尖峰能量,回馈到输入电压,从而实现系统的正常工作。

图1:传统的硬开关反激变换器

图2:有源箝位反激变换器

2、有源箝位反激变换器工作原理

非连续模式DCM有源箝位反激变换器电路结构及相关波形如图2、图3所示,图中的各个元件定义如下。

Lm:变压器初级激磁电感

Lr:变压器初级漏感

Lp:变压器初级总电感,Lp=Lm+Lr

n:变压器初级和次级的匝比,n=Np/Ns

Q1:主功率开关管,DQ1、CQ1为Q1寄生体二极管和寄生输出电容

Qc:箝位开关管,DQc、CQc为Qc寄生体二极管和寄生输出电容

Do:次级输出整流二极管

Cc:箝位电容

Cr:CQ1、CQc以及其它杂散谐振电容Cto总和,Cr=CQ1+CQc+Cto

Cc1:Cc1=Cc+CQ1+Cto

Vsw:Q1的D、S两端电压

Vin:输入直流电压

Vo:输出直流电压

VC:箝位电容电压

每个开关周期根据其工作状态可以分为8个工作模式,各个工作模式的状态及等效电路图分别讨论如下。

图3:有源箝位反激变换器波形(非连续模式DCM)

‍(1)模式1:t0-t‍1

在t0时刻,Q1处于导通状态,Qc、Do保持关断状态。Lp两端所加的电压为Vin,Lp激磁,其电流从0开始,随着时间线性上升。

 

图4:模式1(Q1导通,Qc、Do关断)

(2)模式2:t1-t‍2

在t1时刻,Q1关断,Qc、Do保持关断状态。Q1关断后,Lp和Cr谐振,激磁电流对CQ1充电,对CQc放电,Vsw电压谐振上升。

图5:模式2(Q1、Qc、Do关断)

在t1-t2中间某一时刻tm,对应的Vsw电压为Vin:① t1-tm期间,Lp所加电压为正,其电流谐振上升,但是上升斜率变得缓慢。② tm-t2期间,从tm时刻开始,Lp所加电压为负,其电流谐振下降。

(3)模式3:t‍2-t‍3

在t2‍时刻,Vsw的电压谐振上升到Vin+VC,VC=n•Vo,二极管DQc自然导通,Q1、Do保持关断状态。DQc导通后,Lp和Cc1谐振,激磁电流同时对Cc、CQ1充电,Vsw电压、VC电压谐振上升,Lp的电流继续谐振下降。

图6:模式3(DQc导通,Q1、Do关断)

在t2-t3期间任一时刻,开通Q‍c,由于DQc处于导通状态,其两端电压为0,因此Qc的开通就是零电压开通ZVS。

图7:QQc零电压开通ZVS

初级绕组电压:

VLm=VC•Lm/(Lr+Lm)

此过程中,VLm电压小于n•Vo,Do不导通。

(4)模式4:t3‍-t‍4

在t3时刻,VLm电压谐振上升到n•Vo时,Do导通,Qc保持导通状态,Q1保持关断状态。Do导通后,Lm两端电压箝位在n•Vo,Lm储存能量转移到次级绕组,向输出负载传送,其电流线性下降;同时,Lr和Cc1谐振,Lr的电流同时对Cc、CQ1充电,Vsw电压、VC电压继续谐振上升,Lr的电流谐振下降。

图8‍:模式4(Q‍Qc、Do导通,Q1关断)

(5)模式5:t4-t‍5

在t4时刻,Lr的电流谐振下降到0,Do、Qc保持导通状态,Q1保持关断状态。Lr的电流下降到0后,Lr和Cc1反向谐振,就是Cc对Lr反向激磁,Cc、CQ1放电,Vsw电压、VC电压谐振下降,Lr的电流从0开始反向谐振上升,到达反向的最大值后继续谐振,其反向电流的绝对值下降,而Lm继续向输出负载释放能量,电流保持线性下降。‍

图9:模式5(QQc、Do导通,Q1关断)

(6)模式6:t5-t‍6

在t5时刻,Lm的电流降低为0,Lm电感储存能量全部释放完毕,Do自然关断,Qc保持导通状态,Q1保持关断状态。Do关断后,输出反射电压n•Vo断开,此时,Lm又重新串联进入到谐振回路,Lp和Cc1谐振,Vc电压反向加在Lp,Cc放电对Lp反向激磁,Lm的电流过0后和Lr一起继续反向增加。

图10:模式6(QQc导通,Q1、Do关断)

在Do关断瞬间,Lr的电流有一个高频振荡换流的过程,在这个过程中,Lr的电流快速下降到几乎为0、和Lm电流相等的过程,其中一部分能量转送到输出负载,另一部分能量转移到Lm。

(7)模式7:t6-t‍7

在t6时刻,关断Qc,Do、Q1保持关断状态。Qc关断后,Lp和Cr谐振,Lp的电流对CQc充电,对CQ1放电。‍

图11:模式7(QQc、Q1、Do关断)

在t6‍-t7‍中间某一时刻tn,对应的Vsw电压为Vin:①t6-tn期间,Lp所加电压为负,其电流谐振下降,其反向电流的绝对值进一步增加。②tn-t7期间,从tn时刻开始,Lp所加电压为正,其电流谐振上升,其反向电流的绝对值降低。

(8)模式8:t7‍-t0‍‍

在t7时刻,CQ1放电到0,Vsw电压为0,D1自然导通续流,将Vsw电压箝位到0,Do、Qc保持关断状态。D1导通后,Lp两端所加的电压为Vin,Lp的电流从负值线性上升,其电流绝对值进一步降低,直到降低为0,完成一个开关周期。然后,Lp的电流继续正向激磁,从0开始正向线性上升,开始下一个开关周期。

图12:模式8(D1导通,Q1、Do关断)

在t7-t0期间任一时刻,开通Q1,由于D1‍处于导通状态,其两端电压为0,因此Q1的开通就是零电压开通ZVS。

图13:Q1零电压开通ZVS

‍ 3、 说明讨论

(1)有源箝位软开关反激变换器工作于非连续模式DCM,因此每个周期初级激磁电感的电流要到0。

主功率开关管Q1和箝位开关管Qc配置成半桥的电路结构,只有当Q1(Qc)的寄生体二极管先导通,然后再开通Q1(Qc),才能实现零电压软开关ZVS。

(2)从工作原理可以看到,当Q1关断后开始谐振转换时,谐振环每次只换一个元件,依次的顺序为:

Lp/Cr-->Lp/Cc1-->Lr/Cc1-->Lp/Cc1-->Lp/Cr

(3)只要Lp加正电压,起始电流为正,其电流线性增加;起始电流为负,其电流绝对值线性降低;只要Lp上加负电压,起始电流为正,其电流线性下降;起始电流为负,其电流绝对值线性增加。Lp所加的电压有发生正、负转换时,Lp电流的斜率也发生改化。

(4)Lp的负电流的能量并没有传输到输出,它只是为了实现Q1的零电压关断,因此,Lp的负电流形成环流,在变压器中产生铜损、铁(磁)损,同时在回路的电阻中产生导通损耗,影响系统的效率,因此要精确的控制Lp的负电流的大小。

在t7时刻,当Vsw电压为0时,若Lp的电流也为0,其效率最高,实际上这样的条件很难精确的控制。

(5)由于Cc>>CQ1+Cto,因此,Cc1==Cc。相对于开关周期,t1-t2、t2-t3时间非常短。Cc电容足够大,其纹波可以忽略,因此,t1-t6期间,Vsw的电压可以看成基本不变的平台,如下图所示,图中还标出了开关元件导通的顺序、谐振元件依次改变的顺序。

输出二极管换成MOSFET,则为次级同步整流。为了方便驱动,可以将同步MOSFET放在低端,如图所示。

图14:‍次级同步整流

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭