• 串联电池的主动平衡解决方案

    大型高压可充电电池系统现在是电动汽车、电网负载均衡系统等各种应用中的常见电源。这些大型电池组由单个电池单元的串联/并联阵列组成,能够存储大量能量(数十千瓦时)。锂聚合物或 LiFePO4 电池因其高能量密度和高峰值功率能力而成为常见的技术选择。

  • 具有主动 MPPT 且无镇流电阻的太阳能日光灯设计方案

    对于这种双重转换方案,将光转换为电,然后再转换为光,以使用合理尺寸(和成本!)的太阳能电池板,同时仍保持足够亮以供使用,这要求在两个转换步骤中都实现高效率。此设计理念(见图)介绍了一些实现这些设计要求的方法。

  • 锂电池主动平衡的工作原理及其优点

    锂电池的稳定性和安全性需要谨慎对待。如果锂离子电池单元不在受限的充电状态 (SOC) 范围内运行,其容量就会降低。如果超出 SOC 限制,这些电池可能会损坏,导致不稳定和不安全的行为。因此,为了确保锂离子电池单元的安全性、寿命和容量,必须仔细限制其 SOC。

  • 如何从老式USB供电升级到 USB Type-C PD

    过去几年,带电源传输 (PD) 标准的 USB Type-C® 已广泛应用于各种电子产品。这种采用得益于统一端口(减少电子垃圾)、可逆连接器的便利性和高功率能力等优势。

  • 在 1000 V 反激式变压器中驱动高压硅 FET

    800 V 汽车系统可使电动汽车性能更强大,一次充电即可行驶超过 400 英里,充电时间最快可达 20 分钟。800 V 电池很少在 800 V 的准确电压下运行,最高可达 900 V,而转换器输入要求高达 1000 V。

  • 消除PWM DAC纹波和电源噪声

    之前我的一个设计理念其中展示了一种消除 PWM 输出纹波的简单技巧。它采用普通 PWM 信号与其交流耦合反相的被动求和,从而显著衰减不需要的交流(纹波)分量,而不会影响所需的直流分量。

    电源
    2024-07-19
    纹波 DAC PWM
  • 设计高压直流母线电容器有源预充电电路

    电动汽车 (EV) 通常配备大型直流链路电容器 (C DC LINK ),以最大限度地减少牵引逆变器输入端的电压纹波。在为电动汽车供电时,预充电的目的是在操作车辆之前安全地为 C DC LINK充电。将 C DC LINK充电至电池组电压 (V BATT ) 可防止接触器端子上产生电弧,否则随着时间的推移可能会导致灾难性的故障。

  • 特殊用途集成电路差分放大器:为电源管理提供坚实支撑

    在现代电子系统中,电源管理作为确保系统稳定运行和延长设备寿命的关键环节,其重要性不言而喻。随着技术的不断进步,电源管理系统对精度、效率和可靠性的要求日益提高。在这一背景下,特殊用途集成电路差分放大器(以下简称“差分放大器”)凭借其独特的性能和广泛的应用场景,为电源管理提供了强有力的支撑。本文将深入探讨差分放大器的工作原理、优势及其在电源管理中的应用,展现其在现代电子系统中的重要作用。

  • 逆变器前级推挽输出中MOS管工作原理的深度分析

    在电力电子领域,逆变器作为将直流电转换为交流电的关键设备,广泛应用于太阳能发电、电动汽车、不间断电源(UPS)等多个领域。逆变器的前级推挽输出结构,因其结构简单、效率高而备受青睐。其中,MOS管(金属氧化物半导体场效应晶体管)作为重要的功率开关元件,在推挽输出中扮演着核心角色。本文将对逆变器前级推挽输出中MOS管的工作原理进行深度分析。

  • DC/DC与LDO:深入解析两者的区别

    在电子工程领域,电源管理是一个至关重要的环节。DC/DC(直流到直流)转换器和LDO(低压差线性稳压器)作为两种常见的电源管理器件,各自具有独特的特点和应用场景。本文将从多个维度深入解析DC/DC与LDO之间的区别,帮助读者更好地理解这两种器件。

  • DC/DC转换器在开关模式电源下的设计要点

    DC/DC转换器作为开关模式电源(SMPS)中的核心组件,其设计对于整个电源系统的性能、效率、稳定性和可靠性具有至关重要的影响。随着电子技术的快速发展,DC/DC转换器在各个领域的应用日益广泛,特别是在对电源质量要求较高的场合,如通信设备、数据中心、电动汽车等。本文将从DC/DC转换器的基本原理出发,探讨其在开关模式电源下的设计要点,以期为相关工程师提供有价值的参考。

  • DC/DC 转换器拓扑结构的“最佳”选择

    在电子工程领域,DC/DC转换器是电源设计中的关键组件,用于将一种直流电压转换为另一种直流电压。选择合适的DC/DC转换器拓扑结构对于确保系统的性能、效率和可靠性至关重要。本文将从不同拓扑结构的特点、应用场景以及选择标准等方面,探讨如何做出“最佳”的DC/DC转换器拓扑选择。

  • 提升电源效率和可靠性的黄金搭档:半桥谐振LLC与CoolMOS开关管

    在快速发展的电力电子领域,电源系统的效率和可靠性是衡量其性能的重要指标。随着科技的不断进步,各种高效、高可靠性的电源设计方案层出不穷。其中,半桥谐振LLC拓扑与CoolMOS开关管的结合,凭借其独特的优势,成为了提升电源效率和可靠性的黄金搭档。本文将深入探讨这一组合的工作原理、优势以及在实际应用中的表现。

  • PWM控制式开关模式对稳压器电流影响的研究

    在电力电子技术领域,脉冲宽度调制(PWM)技术作为一种广泛应用的控制策略,在开关模式稳压器(SMPS)中发挥着至关重要的作用。PWM技术通过调节开关元件的导通时间(占空比)来控制输出电压或电流,具有效率高、体积小、响应快等优点。然而,PWM控制式开关模式对稳压器电流的影响是多方面的,本文将从电流波形、纹波、效率、稳定性及电磁干扰(EMI)等角度深入探讨这些影响。

  • 电源设计中EMI的产生、传播及优化

    在现代电子系统设计中,电源不仅是设备正常运行的基石,也是电磁干扰(EMI, Electromagnetic Interference)的主要来源之一。EMI不仅会影响电源自身的稳定性和效率,还可能对系统中的其他电子设备造成干扰,导致整体性能下降甚至故障。因此,在电源设计阶段就充分考虑并有效管理EMI,是确保电子系统电磁兼容性(EMC, Electromagnetic Compatibility)的关键。本文将深入探讨电源设计中EMI的产生机制、传播路径以及优化策略,以期为工程师们提供实用的参考和指导。

发布文章