笔者按:在为期两天的国际便携技术系列上,笔者听到演讲嘉宾不止一次提到“多点触控”“电容式触控”等概念,苹果推出的iPhone系列带动了整个电容式触控屏市场,从小屏到大屏都需要多点触控的方案。同时,随着客户
1.主要技术难点 ①太型LED显示屏上的像素数以万计9随着显示面积增大,电路结构趋于复杂。 ②为了保证一定的显示质量,帧频应在30帧/秒以上。例如,一个512×252像素的单色LED显示),每秒的数据传输量至
设计实现了基于FPGA的256点定点FFT处理器。处理器以基-2算法为基础,通过采用高效的两路输入移位寄存器流水线结构,有效提高了碟形运算单元的运算效率,减少了寄存器资源的使用,提高了最大工作频率,增大了数据吞吐量,并且使得处理器具有良好的可扩展性。详细描述了具体设计的算法结构和各个模块的实现。设计采用Verilog HDL作为硬件描述语言,采用QuartusⅡ设计仿真工具进行设计、综合和仿真,仿真结果表明,处理器工作频率为72 MHz,是一种高效的FFT处理器IP核。
现在,具有创新思维的设计人员、工程师、开发人员以及业余爱好者可通过高度灵活的用户友好型开源嵌入式处理器开发板 HawkBoard 轻松创建业界最佳产品。该低成本开发板通过高稳健性 ARM® 与数字信号处理器 (DSP)
针对经济型直流电机调速应用,采用EPM570T100C5芯片设计了一个通用的、可远程控制的可逆调速模块。调压主回路采用两组双向可控硅、二极管桥式整流电路。介绍了CPLD实现调速的优点和双向可控硅调速原理,给出了模块组成框图,采用Verilog HDL语言和自顶向下的设计方法设计了主模块和速度检测、速度控制、RS 485等子模块,给出了调速子模块的仿真波形。仿真和实验数据表明,模块可精确产生可控硅控制脉冲,有效调节转速,实现较小的误差。
简介 通过加快内部和外部存储转化的性能,USB 3.0为存储器市场带来了一项根本性转变。由于USB 3.0能够使外部驱动器达到与PC内部驱动器相同的数据传输速度,因此用户当然可以比过去更加充分的利用外部存储器。USB 3.
在仿人机器人研究领域,双足步行控制一直是其难点。主要介绍基于TI的DSP芯片TMS320F2812设计双足机器人的基本运动控制系统,围绕机器人腿部无刷直流电机的驱动进行优化设计。系统采用PWM进行电机调速,辅助以补偿参数,通过步态指令,验证电机运转的精确性、稳定性和系统的可操作性。电机调试为CCS仿真、步态规划和独立行走提供试验平台,使机器人能够实现步行功能。
假肢研究的重点是生理信号的提取和对仿生假手的控制。将肌音信号作为假肢控制的生理信号源,现以放大电路和滤波电路为核心,实现了能采集肌音信号的电路系统设计。通过采集软件,将数据导入Matlab进行特征分析,讨论并验证了电路的全部功能,运用该电路采集到了符合要求的肌音信号。该设计是一种实用的肌音信号前端采集电路。
针对工业测控的现状和需求,提出一种新型测控方案,并对其关键技术进行了研究。系统采用双DSP工作模式,并在此基础上提出了并行FFT算法,实现了双余度数据采集及处理,提高了数据处理效率;采用RS 485无线通信方式实现数据和控制信号收发;上位机端基于Lab-VIEW开发平台实现了信号收发,并提供ODBC数据库接口,将虚拟仪器技术和面向Internet的Web技术有机结合起来,很好地满足了监测系统互联和资源共享的需求。
传统的温度控制系统是以热敏电阻为温度传感器件,辅以风冷或水冷来达到目的的,存在体积大,噪音大且精度有限的缺点。介绍了利用数字温度传感器(DSl8B20)与DSP芯片(TMS320F2812)组成的温度测量系统,结合模糊PID算法(Fuzzy-PID),利用DSP的脉宽调制控制通过半导体制冷器的电流大小,达到温度控制的效果,体积小且精度达到O.1℃。给出DSP与DSl8820的接线图,并且介绍了利用CCS(代码编辑工作室)进行软件开发。该系统已经运用在LD温度控制方面,取得了很好的效果。
提出了一种以AT89C51单片机和DSl8820温度传感器为主要元器件的多点温度检测系统。首先给出系统的工作原理和软件流程图,并对系统主要电路,如温度测试电路、键盘及显示电路、电源电路等进行了设计。与传统的模拟测温系统相比,该系统硬件组成更加简捷、高效,抗干扰能力更加突出。
爱特梅尔公司(Atmel® Corporation)宣布,其采用picoPower®技术、嵌入电容式触摸控制器外设的新一代爱特梅尔32位AVR® UC3L微控制器(MCU) 现已在产供货。爱特梅尔通过将静态功耗降低90%,动态功耗降低45%,
利用飞速发展的FPGA技术,在图像采集前端实现Bayer插值变换。比较了常用的3种插值方法,选用计算复杂度较高但图像质量最佳的Optimal Recovery方法。采用Lattice的FPGA芯片LFECP2-M50,实现1 208×1 024图像,12 f/s,实时Bayer转换。给出了实时采集图像结果,显示了插值变换前的原始图像,计算了变换后图像的峰值信噪比PSNR。
在此基于Altera公司的现场可编程门阵列(FPGA)芯片EP2C8F256C6,采用最小均方算法设计了自适应谱线增强(ALE)处理系统。以FPGA为处理核心,实现数据采样控制、数据延时控制、LMS核心算法和输出存储控制等。充分利用FPGA高速的数据处理能力和丰富的片内乘法器,设计了LMS算法的流水线结构,保证整个系统具有高的数据吞吐能力和处理速度。并且通过编写相应的VHDL程序在QuartusⅡ软件上进行仿真,仿真结果表明该设计可以快速、准确地实现自适应谱线增强。
该系统由FPGA、单片机控制模块、键盘、LED显示组成,采用直接数字频率合成(DDS),D/A以及实时计算波形值等技术,设计出具有频率设置功能,频率步进为100 Hz,频率范围为1 kHz~10 MHz之间正弦信号发生器。该系统的频率范围宽,步进小,频率精度较高。