全球能源消耗、人口增长、经济增长以及可持续能源资源推动 Maxell 在先进发展中向前发展,并通过新的电池技术实现卓越。Maxell 凭借其新型 CR17500AU 二氧化锰锂电池 (CR Battery) 再次成功开发了下一代电池。
我希望设计人员在这里获得一些见解,这可能有助于防止锂离子电池在未来在所有类型的环境和产品中起火;至少 直到未来 某个 时间 发现 一种 新 的 成分 电池. 重要的是要找到一种灭火剂,它能扑灭大火并与锂离子电池的化学成分、其电极以及电池舱中的任何其他材料发生适当的反应。对三种灭火剂进行了测试、评估和比较,以了解它们在抑制火灾和热失控反应方面的性能。以前的研究表明哈龙是一种灭火剂,但它的臭氧破坏作用使这种解决方案脱离了可行材料的范畴。
三星电子在确定电池缺陷导致火灾时将召回 250 万部 Galaxy Note 7 智能手机。此次召回可能会影响智能手机供应链,但也会引发严重的安全问题。 从历史上看,锂离子电池在笔记本电脑、电动汽车、悬浮滑板和飞机上都出现过问题——最引人注目的是 2013 年的波音 787。
电动和混合动力汽车的设计人员致力于提高能量转换效率,这些设备具有紧凑的封装和高热可靠性电力电子模块的组装,并降低了开关损耗。
在本文第一部分了解了 BLDC 电机的结构和基本工作原理后,了解可用于电机可靠运行和保护的电机控制选项变得很重要。根据所服务的功能,电机控制可分为以下类别: · 速度控制 · 扭矩控制 · 电机保护
电气设备通常具有至少一个电机,用于将物体从其初始位置旋转或移动。市场上有多种电机类型可供选择,包括感应电机、伺服电机、直流电机(有刷和无刷)等。根据应用要求,可以选择特定的电机。然而,当前的趋势是大多数新设计正在转向无刷直流电机,即俗称的 BLDC 电机。
硅和碳化硅中的 IGBT 和 MOSFET 以类似方式驱动。该器件在 10-20 V 的栅极驱动下开启,通常关闭至 0 V 或负电压以实现更高的功率水平。分立增强型 GaN 器件通常需要 5-7 V 的栅极驱动,并且可能还需要负电压来关闭它们。如果没有正确优化,性能和可靠性都会受到影响。这是因为,虽然 GaN 是一种先进材料,但分立 GaN FET 确实有一个致命弱点:一个必须小心驱动的栅极节点。如果栅极上的电压过低,则 FET 没有完全导通,因此导通电阻和损耗都很高。如果电压太高,可能会损坏栅极。
欧盟大约有 80 亿台电动机在使用,消耗了欧盟生产的近 50% 的电力。由于提高效率和减少碳足迹是政府和行业的主要目标,因此存在多项举措来降低这些电机的耗电量。例如,许多家用电器能源标签的全球标准通过降低能耗以及可听和电气噪声等来影响电器的设计。另一个例子是欧洲引入了工业电机的效率等级,有效地切断了低效率电机的市场。
我们将考虑一个为永磁电机供电的全控变流器,并了解电机如何从一个方向的全速再生制动,然后反向加速到全速。我们在结尾处原则性地研究了这个过程,但在这里我们探讨了使用变流器馈电驱动器实现它的实用性。我们从一开始就应该清楚,在实践中,用户所要做的就是将速度给定信号从全正向更改为全反向:驱动转换器中的控制系统从此开始负责。它的作用和方式将在下面讨论。
到目前为止,我们默认转换器的输出电压与电机消耗的电流无关,仅取决于延迟角 a。换句话说,我们将转换器视为理想的电压源。 在实践中,交流电源具有有限的阻抗,因此我们必须预期电压降取决于电机消耗的电流。也许令人惊讶的是,电源阻抗(主要是由于变压器中的电感漏抗)在转换器的输出级表现为电源电阻,因此电源电压降(或调节)与电机电枢电流成正比.
可以看出,随着负载转矩的减小,会出现电流纹波的最小值接触零电流线的点,即电流达到连续电流和非连续电流的边界。发生这种情况的负载也取决于电枢电感,因为电感越高,电流越平滑(即纹波越小)。因此,不连续电流模式最有可能在具有低电感的小型机器(特别是从两脉冲转换器馈电时)和轻载或空载条件下遇到。
整流桥的基本操作已在之前中讨论过,现在我们转向直流电机在受控整流器提供“直流”电源时的行为问题。 无论如何,在我们看到的电枢电压波形不能被认为是良好的直流电,因此质疑将这种看起来令人不快的波形提供给直流电机是否明智也不是不合理的。
晶闸管直流驱动器仍然是一种重要的速度控制工业驱动器,特别是在与直流电机电刷(比较感应电机)相关的较高维护成本是可以容忍的情况下。受控(晶闸管)整流器为电机电枢提供低阻抗可调“直流”电压,从而提供速度控制。
扩频是一种与开关稳压器相关的技术,可抑制来自感兴趣频带的不需要的噪声,并将其推入噪声不会干扰系统的区域,或者更容易处理的区域。
系统基础芯片或 SBC 是一种集成电路 (IC),它结合了系统的许多典型构建块,包括收发器、线性稳压器和开关稳压器。虽然这些集成设备可以在许多应用中提供尺寸和成本节约,但它们并非在所有情况下都适用。