黑体是一个理想的物理系统——表面或空腔——吸收落在其上的所有辐射能。在热平衡时,黑体发出的辐射仅由其温度决定。由于经典物理学未能将实验结果概念化为一致的理论,普朗克使用了一种没有明显物理证据的策略来解释观察到的黑体光谱并绕过所谓的紫外线灾难。1虽然仍然将辐射视为与腔壁交换能量的电磁波,但普朗克假设腔壁辐射源自振荡器,例如在腔壁内以特定频率振动的原子或分子,并且它们的振荡只能呈现离散的能量值。
史密斯图表提供了对射频/微波设计的深入了解。即使你主要从事于低速模拟和混合信号设计,你也可以从熟悉史密斯图表中获益,因为无线产品激增,而高速系列数据信号显示出类似微波的效果。
在无线通信设备中,射频(RF)PCB的设计是至关重要的。它不仅承载着电流,还对信号的完整性和质量有着显著影响。射频PCB走线规则是确保这些设备性能的关键因素之一。本文将深入探讨射频PCB走线规则,包括阻抗控制、走线长度与宽度、间距、布线层次、接地策略等方面,以期为无线通信设备的设计者提供有价值的参考。
在现代工业和电子系统中,通信技术的重要性不言而喻。其中,CAN(Controller Area Network)总线作为一种高效、可靠的通信标准,自20世纪80年代初由德国Bosch公司开发以来,已经在全球范围内广泛应用于汽车、工业自动化、医疗设备、航空航天以及农业机械等多个领域。本文将详细介绍CAN总线的原理、特点及其在各个领域的应用。
5G 正在迅速席卷整个电子行业。这些速度更快、带宽更高的网络为消费者和企业带来了广泛的好处,但它们需要硬件方面做出重大改变。在这些必要的改变中,5G 电磁干扰 (EMI) 屏蔽是电子工程师面临的最大挑战之一。
在现代通信和电子测试领域,无线综测仪作为关键的测试设备,其准确性和稳定性对于确保产品质量和通信系统的性能至关重要。然而,在使用过程中,无线综测仪可能会遇到各种故障,这些故障可能源于设备本身的硬件问题,也可能是由于操作不当或环境因素引起的。因此,当无线综测仪在校准过程中遇到设备故障时,采取科学合理的故障排除策略显得尤为重要。本文将详细介绍无线综测仪校准中遇到设备故障时的故障排除步骤和注意事项。
在无线通信系统中,发射源与天线之间的阻抗匹配是实现高效信号传输的关键。阻抗匹配的目的是确保信号能量尽可能多地从天线辐射出去,而不是在传输线上反射回发射源,从而降低传输效率和增加功耗。本文将深入探讨如何实现发射源与天线之间的阻抗匹配,包括阻抗匹配的原理、方法、步骤以及实际应用中的注意事项。
在数字化和高速传输技术飞速发展的今天,Type-C接口以其卓越的传输速度、稳定的连接性和便捷的插拔方式,逐渐成为电子产品接口的主流选择。而Type-C AOC(Active Optical Cable,有源光纤线)更是在此基础上,通过采用光纤作为传输介质,实现了信号传输的质的飞跃。本文将探讨Type-C AOC有源光纤线在欧盟标准下的应用现状及其面临的技术瓶颈。
随着5G技术的飞速发展,其在通信领域的应用日益广泛,但随之而来的电源管理问题也愈发凸显。5G基站的高功耗、高密度部署以及复杂的网络环境,对电源管理提出了前所未有的挑战。为了应对这些挑战,未来的5G电源管理将朝着极简高效、全模块化、智能化、网络化四大方向深入发展。本文将详细探讨这四个方向,并展望其未来发展趋势。
PWM(Pulse Width Modulation,脉冲宽度调制)是一种常见的电子控制技术,广泛应用于各种电子设备中,如电机控制、LED调光、电源管理等。
EtherCAT(Ethernet for Control Automation Technology)作为一种高性能的工业以太网技术,以其高速、实时和低延迟的特性,在工业自动化领域得到了广泛应用。EtherCAT EOE(Ethernet Over EtherCAT)技术更是将传统的TCP/IP协议栈封装在EtherCAT的邮箱通信中,实现了以太网数据在EtherCAT网络中的透明传输。本文将深入探讨EtherCAT EOE的移植过程、技术要点以及其在工业自动化中的应用前景。
在物联网(IoT)技术日新月异的今天,Wi-Fi HaLow(即IEEE 802.11ah)作为一种专为物联网设备设计的低功耗、长距离无线通信技术,正逐步成为连接万物的重要桥梁。本文将深入探讨Wi-Fi HaLow的技术特点、应用场景及其在未来物联网领域中的潜力。
在电子通信领域,I2C(Inter-Integrated Circuit)总线作为一种广泛应用的串行通信协议,以其简单、高效的特点,在微控制器、传感器、存储器等多种设备间建立了稳定的连接。然而,I2C总线的稳定工作离不开一个关键元件——上拉电阻。本文将深入探讨I2C总线中上拉电阻的作用及其取值策略,以期为工程师们在实际应用中提供参考。
5g的期望是巨大的。然而,5G部署面临的一个主要挑战是,可用的次级6GGZ频谱不支持为交付先进应用程序和同步用户所需的最佳性能所需的延迟和吞吐量。虽然目前的亚6GGZ5G网络比现有的4GLTE网络稍有改进,但在密集的城市环境和拥挤的活动场地,它们未能实现5G覆盖率、性能和延迟的承诺。mm波技术可以帮助解决这个问题,但也存在挑战。本文探讨了在处理这些5G部署挑战时需要考虑的关键因素。
下图显示了不同接地平面切口宽度的模拟 E‐Field 图以及原始 PCB 设计。这些 E‐Field 图用于确认结构设计正确并发现任何问题区域。例如,在具有较小宽度的第 2 层接地平面切口的模拟中,可以看到共面迹线的 E‐Field 与第 2 层接地平面强烈耦合,从而降低了迹线的阻抗。