电源我们在学习过程中,很多指标都是直接用的概念指标,比如我们说 +5 V 代表1,GND 代表0等等。但在实际电路中的电压值并不是完全精准的,那这些指标允许范围是什么呢?随着我们所学的内容不断增多,大家要慢慢培养
51 系列单片机是高电平复位。如果在 AT89S52 的 9 号引脚(RST)加上宽度大于 2 个机器周期的高电平,该单片机芯片就将处于复位状态。复位时:PC = 0000H,SP = 07H,P0~
51 系列单片机是高电平复位。如果在 AT89S52 的 9 号引脚(RST)加上宽度大于 2 个机器周期的高电平,该单片机芯片就将处于复位状态。复位时:PC = 0000H,SP = 07H,P0~
复位电路的工作原理在书本上有介绍,51单片机要复位只需要在第9引脚接个高电平持续2us就可以实现,那这个过程是如何实现的呢?在单片机系统中,系统上电启动的时候复位一次,当按键按下的时候系统再次复位,如果释放
本文中所提到的对电磁干扰的设计我们主要从硬件和软件方面进行设计处理,下面就是从单片机的PCB设计到软件处理方面来介绍对电磁兼容性的处理。
常用的上电或开关复位电路如图所示。上电后,由于电容C3的充电和反相门的作用,使RST持续一段时间的高电平。当单片机已在运行当中时,按下复位键K后松开,也能使RST为一段时间的高电平,从而实现上电或开关复位的操作。
1 电容充电过程当电容器接通电源以后,在电场力的作用下,与电源正极相接电容器极板的自由电子将经过电源移到与电源负极相接的极板下,正极由于失去负电荷而带正电,负极由
用的是线性时不变的电容。感慨,岁月不饶人,什么电容电感、微分方程早舍吾记忆而去。1 电容充电过程当电容器接通电源以后,在电场力的作用下,与电源正极相接电容器极板的自由电子将经过电源移到与电源负极相接的极
许多高职、专科院校都会采用实践教学的方式来提高对学生动手能力的培养,但长时间以来对实践教学的探索相对薄弱,课程设计存在缺陷。使得学生本身对实践教学的兴趣不高,认识不深,无法将实践教学的内容与课本上所学
一、特点:同步复位:顾名思义,同步复位就是指复位信号只有在时钟上升沿到来时,才能有效。否则,无法完成对系统的复位工作。用Verilog描述如下:always @ (posedge clk) beginif (!Rst_n)...end异步复位:它是指无
本复位电路分为上电复位与开机复位。上电复位:接通电源,把上次关机前,CPU中状态对地清零;开机复位:在接通电源时,机芯开关闭合整机工作前一瞬间把CPU中的信号再次对地清零。本机复位采用低电平复位,高电平保持。上电复位:当接通电源6V电压经R102限流给C104电容充电(根据电容特性电容两端电压不能突变的原理),使T2瞬间导通,把CPU里的信号对地清零。
微处理器是一个复杂又单一的东西。它启动的方式一成不变,严格、准确地重复地执行着函数功能。我们可以当微处理器已经稳定进入启动程序后,发送一个复位操作来让微处理器执行正确的程序指令。当复位信号结束,微处理
对FPGA设计中常用的复位设计方法进行了分类、分析和比较。针对FPGA在复位过程中存在不可靠复位的现象,提出了提高复位设计可靠性的4种方法,包括清除复位信号上的毛刺、异步复位同步释放、采用专用全局异步复位/置位
存储器系统的复位电路(TLC7XX)
对FPGA设计中常用的复位设计方法进行了分类、分析和比较。针对FPGA在复位过程中存在不可靠复位的现象,提出了提高复位设计可靠性的4种方法,包括清除复位信号上的毛刺、
微处理器的复位电路
复位电路的检测部位和数据
微处理器的复位电路b
微处理器的复位电路a
PIC16C5X的复位电路可以由系统上电,把MCLR输入拉为低电平,或看门狗定时器溢出而产生。振荡启动定时器OST作用或MCLR输入为低电平,单片机将保持复位状态,复位时单片机处于以下状态:· 振荡器启动或工作,包括电源