对于PCB工程师来说,最关注的还是如何确保在实际走线中能完全发挥差分走线的这些优势。也许只要是接触过PCB Layout的人都会了解差分走线的一般要求,那就是“等长、等距”。等长是为了保证两个差分信号时刻保持相反极
驱动端发送两个大小相等,方向相反的信号,接收端会有一个相减器,比较这两信号的差值,来判断逻辑位是 0或是 1,此即所谓的差分讯号[1]。 而下图是实际 PCB差分走线[1]。Advantage 使用差分讯号的第一个好处,就是具
差分信号(Differential Signal)在高速电路设计中的应用越来越广泛,电路中最关键的信号往往都要采用差分结构设计。何为差分信号?通俗地说,就是驱动端发送两个等值、反相的信号,接收端通过比较这两个电压的差值来
电路功能与优势许多应用都要求通过高分辨率、差分输入ADC来转换单端模拟信号,无论是双极性还是单极性信号。本直流耦合电路可将单端输入信号转换为差分信号,适合驱动PulS
差分信号(DifferenTIal Signal)在高速电路设计中的应用越来越广泛,电路中最关键的信号往往都要采用差分结构设计,什么令它这么倍受青睐呢?在PCB设计中又如何能保证其良好的性能呢?带着这两个问题,我们进行下一
初步介绍差分测量、放大器类型、应用及怎样避免常见错误 当存在500 mVp-p、60 Hz 的共模噪声时,使用传统示波器探头不能测量模拟的4 mVp-p心跳波形(上图)。差分放大器则可以从噪声中提取信号。 引论
对于速度的渴求始终在增长,传输速率每隔几年就会加倍。这一趋势在诸如计算、SAS和SATA存储方面的PCIe以及云计算中的千兆以太网等很多现代通信系统中很普遍。