车牌识别系统(LPR)在现代交通检测和管理部门中发挥着举足轻重的作用。车牌识别系统主要包括车牌定位、字符分割和字符识别三部分[1]。由于车牌定位的准确与否将会直接影响到车牌识别的结果,因此,车牌定位是LPR的一
针对复杂背景的车牌定位问题,提出了一种综合形态、颜色、投影等多种特征的车牌定位算法。基于车牌区域边缘信息丰富的特点,首先利用边缘检测和数学形态学方法定位候选车牌区域,并消除噪声干扰;然后根据质心所在位置对候选区域进行由低到高的排序,并通过颜色识别作进一步筛选,以排除车灯等区域的干扰;最后采用投影法及谷值分析对截取出的缺损车牌进行补全,从而得到准确的车牌位置。实验结果表明,算法的效率与精度与车辆图像的清晰度、曝光度及车牌大小等因素有关,与传统车牌定位算法相比,效率和精度分别提高了15%和20%以上。
1 引 言 智能交通系统是一个热点研究领域,受到日益广泛的关注。车牌识别系统(LPR)是计算机视觉、模式识别技术在智能交通领域的一个重要应用,包括车牌定位、车牌字符分割、字符识别三部分。其中车牌定位是
基于数学形态学的人脸检测研究