为了符合相关法规,通常需要采用电磁干扰 (EMI) 滤波器,而该滤波器通常在系统总体尺寸和体积中占据很大一部分,因此了解高频转换器的 EMI 特性至关重要。
锁相环(PLL)作为电子系统中常见的频率合成和同步组件,其性能在很大程度上依赖于回路滤波器的设计。回路滤波器不仅决定了PLL的环路带宽和相位裕量,还直接影响相位噪声、杂散和锁定时间等关键指标。因此,合理设计和调整PLL回路滤波器至关重要。
Wi-Fi是一个品牌名称,而不是首字母缩写,而IEEE802.11标准则定义了能够与目前的无线无线设备进行通信的协议,包括无线路由器和无线接入点。这些标准在不同频率上运行,提供不同的带宽,并支持不同数量的频道。此外,Wi-Fi命名协议还包括一个专门的数字,如Wi-Fi6和Wi-Fi6E。
LC 滤波器的转角频率始终设计为低频,以衰减开关纹波。根据经验,电感的电流纹波总是设计为平均电感电流的 30% 左右。
在下述的内容中,小编将会对LC滤波器的相关消息予以报道,如果LC滤波器是您想要了解的焦点之一,不妨和小编共同阅读这篇文章哦。
为增进大家对滤波器的认识,本文将对输入滤波器和输出滤波器的区别予以介绍。
为增进大家对滤波器的认识,本文将介绍如何通过滤波器类型判断滤波器的通带和阻带。
为增进大家对滤波器的认识,本文将对滤波器的插入损耗以及滤波器的频率范围予以介绍。
开关电源自身产生的噪声是一种高频的脉冲串,由发生在开关导通与截止瞬间产生的尖脉冲所造成,也称为开关噪声。噪声脉冲串的频率比开关频率高得多,噪声电压是其峰峰值。噪声电压的振幅很大程度上与开关电源的拓扑、电路中的寄生状态及PCB的设计有关。
在电力电子系统中,输入整流器和滤波器是不可或缺的关键组件,它们共同负责将交流(AC)电源转换为直流(DC)电源,并滤除电源中的谐波和噪声,确保后续电路的稳定性和可靠性。本文将深入探讨输入整流器和滤波器的设计原理、常见类型、应用场景以及优化策略,为电力电子工程师提供全面的参考。
插入损耗包括共模插入损耗和差模插入损耗两种。插入损耗越小,说明滤波器对输入信号的衰减程度就越低,滤波器的性能就越好。
在电路板设计中,噪声问题是每位设计师都会遇到的一大问题。为了解决噪声问题,一般需要花费数小时时间来进行实验室测试才能揪出真正的元凶。
滤波器是一种选频装置,可以使信号中特定的频率成分通过,而极大地衰减其他频率成分。利用滤波器的这种选频作用,可以滤除干扰噪声或进行频谱分析。
滤波电路是电子电路中非常重要的一部分,它主要用于去除信号中的噪声和干扰,提高信号的稳定性和可靠性。在滤波电路中,电容起着至关重要的作用。
在现代电子系统中,滤波器作为信号处理的关键组件,广泛应用于数字信号处理、通信、自动控制等领域。传统的滤波器设计往往固定其工作频率和带宽,难以满足复杂多变的信号处理需求。而基于单片机控制的程控有源滤波器,通过编程灵活调整滤波器的中心频率、带宽及品质因数等参数,为信号处理提供了极大的便利和灵活性。本文将详细介绍一种基于单片机控制的程控有源滤波器电路的设计和实现。
带通滤波器和带阻滤波器是滤波器设计中的两种基本类型,它们在工作原理和应用上存在着显著的差异。
在电子信号处理中,带通滤波器是一种允许特定频率范围内的信号通过,同时衰减其他频率信号的电路。其中,Q值(品质因数)是衡量滤波器选择性的重要参数,它决定了滤波器带宽与中心频率的比值。在许多应用中,如音频处理、无线通信、生物医学信号处理等,实现一个Q值可调且最大增益恒定的带通滤波器显得尤为重要。本文将详细介绍如何利用两个运算放大器(运放)设计一个这样的滤波器,并探讨其工作原理、设计步骤及性能特点。
在电子信号处理领域,滤波器是一种用于从信号中去除不需要的频率成分或保留特定频率成分的电路。其中,可变频率滤波器因其能够根据需求调整截止频率而备受青睐。特别地,高斜率滤波器(也称为陡峭滤波器)在需要快速衰减非目标频率时尤为重要。本文将探讨如何利用电位器(模拟控制)或数字到模拟转换器(DAC,数字控制)来实现一个可变频高斜率滤波器,并分析其设计原理、实现方法及应用场景。
在现代电子系统中,滤波器作为信号处理的重要组成部分,其性能直接影响系统的整体表现。可变频高斜率滤波器,因其能够在不同频率下提供精确的滤波效果,广泛应用于音频处理、通信系统及工业控制等领域。本文将深入探讨采用电位器或DAC(数模转换器)实现的可变频高斜率滤波器的设计原理、实现方式及其优缺点。
在数字信号处理领域,抗混叠滤波器(Anti-Aliasing Filter)扮演着至关重要的角色。它们的主要职责是在模拟信号被采样转换成数字信号之前,滤除高于奈奎斯特频率(Nyquist Frequency,即采样率的一半)的频率成分,以防止这些高频成分在采样过程中发生混叠(Aliasing),进而影响数字信号的准确性和可靠性。设计一个高效、合适的抗混叠滤波器,需要遵循三大核心指导原则,这些原则不仅关乎滤波器的性能,还直接影响到整个信号处理系统的质量和效率。