电容触摸技术作为一种实用、时尚的人机交互方式,已经被广泛的应用到各种电子产品,小到电灯开关,大到平板电脑、触摸桌等。
在工业应用中,传感器节点、工业仪表和控制面板上的机械按钮很容易落满灰尘,而越积越多的灰尘最终会导致设备故障。在工业环境中用电容触摸机制来替代机械按钮的人机接口 (HMI) 系统提供诸如更加时尚设
电容触摸屏由于操作界面简洁,能给手机显示屏留出更大的空间,加上多点触控与手势控制两大出色性能等,彻底改变了智能手机的人机交互方式。然而传统的电容触摸屏还远没有达到完美的阶段,依然采用了直接导入外
(文章来源:触想智能) 关于工业平板电脑的触摸方式,这段时间触想已经更新了不少文章,特别是针对电容触摸屏与电阻触摸屏这两类主流触摸方式。那么,今天触想小编将继续谈谈关于工业平板电脑电容触
一。 电容触摸按键原理1. RC 充放电电路原理Cx电压从0开始充电,一直到V1。如果达到同样的电压值,如果电容越大,那么达到的时间越长。手指按下后,电容值为Cs+Cx,电容变大,充电时间变长,通过判断充电时间长短来判
MSP430系列单片机以低功耗和外设模块的丰富性而著称,而针对电容触摸应用,MSP430的PIN RO 电容触摸检测方式支持IO口直接连接检测电极,不需要任何外围器件,极大的简化了电路设计,而本设计文档中使用的MSP430G
原理:R:外接电容充放电电阻。Cs:TPAD和PCB间的杂散电容。Cx:手指按下时,手指和TPAD之间的电容。开关:电容放电开关,由STM32IO口代替。没有按下的时候,充电时间为T1(default)。按下TPAD,电容变大,所以充电时
本文主要介绍了瑞萨电子的静电电容式触摸检测技术,包括触摸开关检测的基本原理和抗干扰技术。
本文介绍的基于RC充电检测(RC Acquisition)的方案可以在任何MCU上实现,是触摸感应技术领域革命性的突破。首先介绍了RC充电基础原理,以及充电时间的测试及改进方法,然后详细讨论了基于STM8S单片机实现的硬件、软件设计步骤,注意要点等。
通常而言,电容式触控面板有时会比较难以处理,尤其是在下雨的时候,落下的雨滴与指尖的触感十分相似,而当用干毛巾擦拭面板时,还可能导致少部分微控制器(MCU)失控。
摘要本应用文档介绍了使用MSP430微控制器实现电容触摸转轮和多路独立LED的PWM软件驱动技术。方案通过4路I/O 端口实现电容触摸转轮控制,I/O端口配合三极管驱动LED,实现LE
MSP430($2.0250) 系列单片机以低功耗和外设模块的丰富性而著称,而针对电容触摸应用,MSP430($2.0250) 的PIN RO 电容触摸检测方式支持IO 口直接连接检测电极,不需要任何外
MSP430系列单片机以低功耗和外设模块的丰富性而著称,而针对电容触摸应用,MSP430的PIN RO 电容触摸检测方式支持IO 口直接连接检测电极,不需要任何外围器件,极大的简化了
MSP430系列单片机以低功耗和外设模块的丰富性而著称,而针对电容触摸应用,MSP430的PIN RO 电容触摸检测方式支持IO 口直接连接检测电极,不需要任何外围器件,极大的简化了
MSP430系列单片机以低功耗和外设模块的丰富性而著称,而针对电容触摸应用,MSP430的PIN RO 电容触摸检测方式支持IO 口直接连接检测电极,不需要任何外围器件,极大的简化了
MSP430系列单片机以低功耗和外设模块的丰富性而著称,而针对电容触摸应用,MSP430的PIN RO 电容触摸检测方式支持IO口直接连接检测电极,不需要任何外围器件,极大的简化了
笔者从南昌高新区管委会获悉,韩国三星集团主要配套商美法思株式会社与高新区江西联创电子股份公司签订了投资协议,双方将投资1亿美元在南昌高新区设立合资公司,打造全球最具竞争力和相当规模的触控显示产业基地。部
SMK于2013年10月3日宣布,开发出了单层薄膜结构的静电容量式触摸面板(自电容式),已开始开展扩销活动。这款触摸面板主要面向家电产品和办公用电子设备等,可实现这些产品的特定操作。 据SMK介绍,普通薄膜结构的
由于广泛用于智能手机和平板电脑之中,投射电容(PCAP)触摸控制器IC市场今年以及今后几年将稳健增长,但超薄PC等新型应用也必须使用PCAP,这样才能保证该产业的持续扩张。PCAP用于实现触摸屏功能。预计今年总体PCAP触
据IHS公司的显示电子专题报告,由于广泛用于智能手机和平板电脑之中,投射电容(PCAP)触摸控制器IC市场今年以及今后几年将稳健增长,但超薄PC等新型应用也必须使用PCAP,这样才能保证该产业的持续扩张。PCAP用于实现触