开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源。开关电源产品广泛应用于工业自动化控制、军工设备、科研设备、LED照明、工控设备等领域。相信开关电源已经不是什
一、设计特色 1、精确的初级侧恒压/恒流控制器(CV/CC)省去了光耦器和所有次级侧CV/CC控制电路,无需电流检测电阻,即可达到最高效率;使用元件少、低成本的解决方案。 2、自动重启动保护功能可在输出短路或开环
一、设计特色 1、精确的初级侧恒压/恒流控制器(CV/CC)省去了光耦器和所有次级侧CV/CC控制电路,无需电流检测电阻,即可达到最高效率;使用元件少、低成本的解决方案。 2、自动重启动保护功能可在输出短路或开环
一、设计特色 1、精确的初级侧恒压/恒流控制器(CV/CC)省去了光耦器和所有次级侧CV/CC控制电路,无需电流检测电阻,即可达到最高效率;使用元件少、低成本的解决方案。 2、自动重启动保护功能可在输出短路或开环
世界各地有关降低电子系统能耗的各种倡议,正促使单相交流输入电源设计人员采用更先进的电源技术。为了获得更高的功率级,这些倡议要求效率达到87%及以上。由于标准反激式(flyback)和双开关正激式等传统电源拓扑都不
基于电感的开关电源(SM-PS)包含一个功率开关,用于控制输入电源流经电感的电流。大多数开关电源设计选择MOSFET作开关(图1a中Q1),其主要优点是MOSFET在导通状态具有相对较低的功耗。 MOSFET完全打开时的导
世界各地有关降低电子系统能耗的各种倡议,正促使单相交流输入电源设计人员采用更先进的电源技术。为了获得更高的功率级,这些倡议要求效率达到87% 及以上。由于标准反激式 (flyback) 和双开关正激式等传统电源拓扑都
一、电路设计 一节镍氢电池的电压只有1.2V,而超高亮LED需要3.3V以上的工作电压才能保证足够的亮度。因此。必须设法将电压升高,常见的升压电路一般有二种形式,即高频振荡电路和电磁感应升压电路。对于升压电路
一、电路设计 一节镍氢电池的电压只有1.2V,而超高亮LED需要3.3V以上的工作电压才能保证足够的亮度。因此。必须设法将电压升高,常见的升压电路一般有二种形式,即高频振荡电路和电磁感应升压电路。对于升压电路
中心议题: DC-DC转换器的PCB寄生电感测试试验 DC-DC转换器中PCB布线寄生电感对于效率的影响解决方案: 栅极电感的影响 源极电感的影响 漏极电感的影响 栅-源极电感的影响 源极 HS - 源极LS电感
中心议题: DC-DC转换器的PCB寄生电感测试试验 DC-DC转换器中PCB布线寄生电感对于效率的影响解决方案: 栅极电感的影响 源极电感的影响 漏极电感的影响 栅-源极电感的影响 源极 HS - 源极LS电感
反激式开关电源与正激式开关电源不同,对于如图1-19的反激式开关电源,其在控制开关接通其间是不向负载提供能量的,因此,反激式开关电源在控制开关接通期间只存储能量,而仅在控制开关关断期间才把存储能量转化成反
反激式开关电源变压器的参数计算与正激式开关电源变压器的参数计算相比,除了变压器初级线圈的匝数和伏秒容量,变压器初、次级线圈的匝数比,以及变压器各个绕组的额定输入或输出电流或功率以外,还需要特别注意考虑
在多层板中,由于不止一个地平面,我们一定要仔细考虑返回地电流从哪里回流问题。图5.2举例说明了返回电流流向的基本原则:高带返回信号电流沿着最小的电感路径前进。如果我们设想图5.2中的地平面多于一个,对于哪个
对数字电路设计者来说,通孔的电感比电容更重要。每个通孔都有寄生中联电感。因为通孔的实体结构小,其特性非常像素集总电路元件。通孔串联电感的主要影响是降低了电源旁路电容的有效性,这将使整个电源供电滤波效果
反激式开关电源变压器初级线圈电感量的计算反激式开关电源与正激式开关电源不同,对于如图1-19的反激式开关电源,其在控制开关接通其间是不向负载提供能量的,因此,反激式开关电源在控制开关接通期间只存储能量,而
原理:R4两端输出超低阻抗的信号电压源,串联在LC谐振回路中。当电路发生谐振时,L和C的感抗和容抗相消,回路只剩下只剩下R4与LC谐振器的损耗电阻r两者串联。并R4两端的电压就是r两端的电压。这样,我们只在测量出R4
据外媒报道,德州仪器 (TI) 于日前宣布推出整合电感的最新 6V、6A同步整合型电源模组TPS84610,每立方英寸 750 W、峰值电源效率 高达97%,支援12℃/W 散热 功能,比同类模组提升40%。TPS84610 支援 2.95 V 至 6 V 输
LED 是一种固态电光源, 是一种半导体照明器件,其电学特性具有很强的离散性。它具有体积小、机械强度大、功耗低、寿命长, 便于调节控制及无污染等特征,有极大发展前景的新型光源产品。LED 调光方法的实现分为两
我们可以预测,如果用有接地引线的探头去测量来自低源端电阻信号源的信号,会观察到人为的振铃和过冲现象。通过图3.6和图3.7,可以比较我们的判断和实际的测量结果。这些实验采用电容极低的FET型探头,额定为1.7PF并