如果存在电场发射,则可能的罪魁祸首是系统中的最高电位。在电源和开关稳压器中,我们应该注意开关晶体管和整流器,因为它们通常具有高电位,并且还可能由于散热而具有较大的表面积。表面贴装设备也可能存在这个问题,因为它们通常需要大量的印刷电路板铜来散热。在这种情况下,我们还应该注意任何大面积散热层与接地层或电源层之间的电容。
对于一些需要尽可能低的输出噪声的应用,使用线性稳压器的效率不足是不可接受的。在这些情况下,后置线性稳压器的开关稳压器可能是合适的。后置稳压器可衰减开关稳压器产生的高频噪声,从而使噪声性能接近单独的线性稳压器。由于大多数电压转换发生在开关稳压器中,因此效率损失远小于单独线性稳压器的损失。
为了说明开关稳压器的操作,请考虑一个典型的同步整流降压转换器。在正常运行期间,当高端开关 Q 1导通时,电路将电流从输入端传导到输出端,当 Q 1 关断且同步整流器 Q 2导通时,电流 继续通过电感器传导 。电流和电压波形的一阶近似值错误地假设所有组件都是理想的,但本文稍后将介绍这些组件的寄生效应。
大多数便携式设备都包含稳压器或其他形式的电源,并且与较小的光刻 IC 相关的较低电源电压也要求在许多非便携式设备中使用这些电源电路。尽管许多设计人员并不完全了解这些权衡取舍,但这些权衡取舍会对电池寿命、符合 EMI/EMC 法规以及所设计产品的基本操作产生重大影响。了解稳压器类型、电路拓扑、相关组件和布局对于控制电源 EMI 至关重要。