在电子工程领域,晶振(晶体振荡器)是确保电子设备稳定运行的关键组件之一。它们利用晶体材料的固有频率特性来产生稳定的时钟信号,为系统提供时间基准。晶振主要分为两大类:有源晶振和无源晶振。尽管两者都用于生成时钟信号,但它们在结构、工作原理、性能和应用场景上存在显著差异。
在高频电路设计的广阔领域中,耦合电容作为连接电路各部分的桥梁,扮演着至关重要的角色。它不仅影响着信号的传输质量,还直接关系到电路的稳定性和性能表现。本文将从耦合电容的基本概念出发,深入探讨其在高频电路设计中的重要性,并分析其如何影响电路的频率特性、信号完整性以及整体性能。
DDS是一种应用数字技术产生信号波形的方法,主要组成:相位累加器、波形存储器、D/A转换器和低通滤波器。基本工作原理是:在参考时钟信号的控制下,通过由频率控制字K控制的相位累加器输出相位码,将存储于波形存储
高频输出放大器
如图所示为具有锐截止特性的有源高通滤波电路。为了改进高通滤波器在截止频率fc附近的频率特性,本电路将高通滤波器和一个带阻滤波器串联,这样可以改善高通滤波器的频率特性。图中第一级为带阻滤波器,由双T网络加负
低音衰减的简化电路
我们知道每种电容都有它的频率特性,那么AVX 钽电容的频率特性是怎么样的呢?AVX 钽电容随着频率的增加有效电容的值会减小,直到共振达到(通常视0.5 - 5MHz 的之间该评级)。
具有平坦频率特性的±90°移相电路
近似理想特性的积分电路
可产生对数扫描信号的反对数转换电路(10-x)
可获得陡峭截止频率特性的3.4kHz8阶契比雪夫低通滤波器
1.耦合电容、旁路电容、极间电容存在 → 阻抗随频率变化 → 放大倍数是频率的函数——频率响应(频率特性),它包括幅频特性和相频特性。2.共射放大电路幅频特性显示:低频区: f↓ → A u
前面曾经指出,由于晶体管某些参数随频率而变化,电路中又总是存在一些电杭性元件,因而使放大倍数也随频率而变,放大电路通频带比较窄。负反馈的自动调节作用可以使放大电路的放大倍数随频率的变化减小,从而使通频
多级放大电路的电压放大倍数是各级电压放大倍数的乘积,即其模和相角可分别表示为Au =Au1·Au2·…·Aunφ=φ1+φ2+…+φn以上两式说明,多级放大电路的幅频特性等于各级
单级共射阻容耦合放大电路如图Z0227所示。在图Z0235中,Cie(Cbe)、Cc(Cbc)。分别表示晶体管的发射结和集电结的等效电容,一般为几pF~几百pF。一、中频段中频段放大电路的微变等效电路如图Z0228所示。输入耦合电
TDK开发出了可听波段的频率特性基本为平坦状并抑制了收到大声音时失真的MEMS(微小电子机械系统)麦克风。这是利用自主封装技术减小封装内部容积来实现的。据该公司介绍,平坦的频率特性对消除噪声有效,大声音不失真
1、半导体材料制作电子器件与传统的真空电子器件相比有什么特点?答:频率特性好、体积小、功耗小,便于电路的集成化产品的袖珍化,此外在坚固抗震可靠等方面也特别突出;但是在失真度和稳定性等方面不及真空器件。 2
一:频率特性简述(1):由于放大电路中存在电抗元件C,因此它对不同频率呈现的阻抗不同,所以放大电路对不同频率成分的放大倍数和相位移不同。放大倍数与频率的关系称为幅频关系;相位与频率的关系称为相频关系。放
电路的功能“具有平坦频率特性的±90度的移相电路”的移相电路只能在0~+180度范围内移相,可使用CO与RO位置互换的-90度的移相电路。电路的工作原理基本工作原理与“具有平坦频率特性的±
电路的功能移相电路是使正弦波相们产生超前或滞后的电路,移相电路也可把SIN波改成COS波,对于3相相交流波,增加两级120度移相器可获得3相输出。此外,也可作为普通的信号移相电路。应用范围很广。本电路的基本相移为