前市场流行的3.5寸屏基本上都是只内置了驱动器,而不带控制器,这样给用户的使用造成了一些难度。基本上很多朋友在用彩屏时选择一些带LCD控制器的ARM7或ARM9去开发,对于不会ARM开发的朋友来说,只使用普通MCU,这样可以选择的3.5寸TFT模块,就很难找到了。
AT89S51最小系统制做
AT89c51与AT89S51单片机的区别
AT89S51的由来及与C51的区别
AT89S51芯片的日渐流行,对我们单片机初学者来说是一个大好消息。因为做个AT89S51编程器非常容易,而且串行编程模式更便于做成在线编程器,给频繁烧片,调试带来了巨大的方便。
串行口工作于方式2和方式3时,被定义为9位异步通信接口。每帧数据均为11位,1位起始位0,8位数据位(先低位),1位可程控为1或0的第9位数据和1位停止位。
串行口的工作方式0为同步移位寄存器输入/输出方式。这种方式并不是用于两个AT8 9 S51单片机之间的异步串行通信,而是用于串行口外接移位寄存器,以扩展并行I/O口。
1.访问程序存储器的控制信号AT89S51单片机访问片外扩展的程序存储器时,所用的控制信号有以下3种。(1) ALE——用于低8位地址锁存控制。(2) PSEN(的反)——片外程序存储器“读选通”控
AT89S51单片机受引脚数的限制,PO口兼用数据线和低8位地址线,为了将它们分离出来,需要在单片机外部增加地址锁存器。目前,常用的地址锁存器芯片有74LS373、74LS573等。
在实际的单片机应用系统设计中,往往既需要扩展程序存储器,又需要扩展数据存储器(I/O接口芯片中的寄存器也作为数据存储器的一部分),如何把片外的两个64KB地址空间分配给各个程序存储器、数据存储器芯片,并且使程序存储器和数据存储器的各芯片之间,一个存储器单元只对应一个地址,避免单片机发出一个地址时同时访问两个单元,而发生数据冲突。这就是存储器的地址空间的分配问题。
AT89S51单片机采用总线结构,使扩展易于实现
AT89S51单片机的片内硬件组成结构如图2-1所示。它把那些作为控制应用所必需的基本功能部件都集成在一个尺寸有限的集成电路芯片上
AT89S51单片机串行口的内部结构如下图所示。它有两个物理上独立的接收、发送缓冲器SBUF(属于特殊功能寄存器),可同时发送、接收数据。发送缓冲器只能写入不能读出,接收缓冲器只能读出不能写入,两个缓冲器共用一个特殊功能寄存器字节地址(99H)。
AT89S51有两种低功耗节电工作模式:空闲模式(Idle Mode)和掉电保持模式(PowerDown Mode),其目的是尽可能低降低系统功耗。在掉电保持模式下,VCC可由后备电源供电。
复位是单片机的初始化操作,只需给AT89S51的复位引脚RST加上大于2个机器周期(即24个时钟振荡周期)的高电平就可使AT89S51复位。
时钟电路用于产生AT89S51单片机工作时所必需的控制信号。AT89S51单片机的内部电路正是在时钟信号的控制下,严格地按时序执行指令进行工作。
AT89S51单片机共有4个双向的8位并行I/O口,分别记为PO、Pl、P2和P3,其中输出锁存器属于特殊功能寄存器。端口的每一位均由输出锁存器、输出驱动器和输入缓冲器组成,这4个端口除了按字节输入/输出外,还可以按位寻址,便于位控功能的实现。
AT89S51单片机存储器结构的特点之一是将程序存储器和数据存储器分开(称为哈佛结构),并有各自的对这两个不同的存储器空间的访问指令。
中断系统的运行必须与中断服务子程序配合才能正确使用。设计中断服务子程序需要首先明确以下几个问题。
AT89S51为用户提供两个外部中断请求输入端INT0(的反)和INT1(的反),实际的应用系统中,两个外部中断请求源往往不够用,需对外部中断源进行扩充。下面介绍一种扩充外部中断源的方法。