VCVS高通滤波器电路原理及函数将低通滤波器的低通网络中电阻和电容互换,即得高通滤波器,如图5.4-56所示。用前述的方法,可写出基传输函数为上式和式“高通滤波器”比较,可得C的取值原则同前,取C1=C2=C。由上式求
VCVS低通滤波器电路原理与函数计算电路如图5.4-55所示。对图中电路列写节点方程,可求出该电路的传输函数为H(S)=上式和式“低通滤波器”比较可得电容C值的选取C2=C和C5=KC由上式得式中K值必须满足式:K≤HO-1+A2/4
巴特沃思、切比雪夫模拟低通滤波器通常是设计模拟高通、带通和带阻滤波器的原型,先按给定频率响应巴特沃思、切比雪夫低通Ha(s)逼近,然后由选定Ha(s)实现二端口网络的电路结构和参数值。在此对达林顿T型和∏型电路结构的滤波器元件参数进行了编程计算,并对其系统函数的幅频特性进行仿真。仿真结果符合设计要求,该方法便捷,程序具有可扩展性。
MFB低通滤波器电路如图5.4-50所示分析图5.4-50的电路,可得出其传输函数为H(S)=将上式与式“低通滤波器”公式相比较,可求得:滤波器参数对各无源元件变化的灵敏度为:灵敏度标志着滤波器某个特性的稳定程度,是滤
在有源滤波器的设计中,高阶滤波器的传输函数都可以分解成一阶和多个二阶传输函数的乘积。一阶传输函数比较简单,二阶函数分析如下。1、低通滤波器2、高通滤波器式中,HO为传输增益双称通频带增益:A为阻尼系数,WO为
方法1 电感为什么在低频时要把并联改为串联?从感抗与电阻的比值来分析Q值,不容易找到答案,并改串应该是不能提高Q值的。但通过今天的试验,开始明白为什么要串联。同时提高电感和电阻,虽然不能提高Q,但可以提高电
脉冲-宽度-高度调制乘法器双称为时间分割乘法器。这类乘法器电路原理图如图5.4-24A所示。图中,三角波电压UT和模拟输入电压UY相加,然后通过零电平比较器,得到不对称方波控制电压U2。U2的工作周期取决于UY的大小和极
为了保证太阳能发电系统的可靠性。需要时系统中一些主要参数(如电流、电压、频率等)进行实时监控,以了解整个系统运行状态。这里以ST公司的ARM9芯片作为硬件平台的核心芯片,主要叙述监控系统中数据采集和传输部分的硬件设计,开发基于ARM的RS 232,RS 485和以太网通信接口。通过这些通信接口实现对太阳能发电系统中一些主要参数的监控,从而可以实时地掌握太阳能发电系统的运行状态,提高太阳能发电系统的效率。这里提出一种利用RS 485串口代替RS 232串口进行通信的新方法。
在基于ARM的超声波测厚系统中,ARM处理器的数据接收能力往往与A/D芯片的工作速率不匹配,为避免有效数据丢失,提高系统工作效率,用FIFO作为高速A/D与ARM处理器之间的中转接口会得到很好的效果。这里以FIFO存储器CY7C4261作为中转器件实现了A/D芯片AD9283与ARM处理器S3C2410的接口设计,并叙述了数据从A/D芯片到ARM的整个数据采集过程。该接口电路用FIFO实现了超声测厚系统中A/D与ARM之间的无缝连接,提高了系统测厚精度。它的电路简单,调试方便,具有较高的应用价值。
电路的功能数100MH以上的电感,重量重,体积大,不适合现在的使用要求,除特殊用途外,低频LC滤波器基本上都可换成有源滤波器,本电路用正反馈电路对电容器C的频率-阻抗特性进行倒相,形成等效的电感,线圈L的一端被
电路的功能容量可变的电容器,其最大可变容量为500PF,当容量变化范围要求更大时,可采用容量倍增器由于电容器一端接地,使其用途受到一定限制,但可以制作无极性的大容量电容。采用可变电阻VR1,可使容量倍率在1~11
电路的功能采用OP放大器的直流放大器,失调漂移固然重要,而低频噪声也必须小。不同种类的OP放大器基噪声差别很大,必须进行实测,以掌握具体参数。本电路是OP放大器的噪声电压测定电路,测量带宽为0.1HZ~10HZ,侧重
电路的功能晶体管的集电极负载若采用LC谐振回路,为了使振荡稳定,皮尔斯C-B或波尔斯B-E电路的振荡频率必须稍稍调偏,如不用电感L,则可采用本电路这种无调节振荡电路。电路工作原理若把石英振子看成电感L,则可将其
高压金属氧化物半导体场效应晶体管(MOSFET)技术在过去几年中经历了很大的变化,这为电源工程师提供了许多选择。了解不同MOSFET器件的细微差别及不同切换电路的应力,能够帮助工程师避免许多问题,并实现效率最大化。经验证明,采用新型的MOSFET器件取代旧式MOSFET,除简单地导通电阻上的差异之外,更重要的是,还能实现更高的电流强度与更快的切换速度以及其他优越性能。
电路的功能近来出现了把TTL器件换成C-MOS器件的趋势,而且74HC系列产品也得到了进一步的充实。用2级TTL构成的时钟振荡电路已可用C-MOS IC构成的振荡电路替代,因为TTL IC如果置偏电阻等元件参数选择不当,容易停振或