为增进大家对信号放大器的认识,本文将介绍如何区分信号放大器的好坏以及安装信号放大器的方法,并探讨信号放大器对人体是否有害。
为增进大家对信号放大器的认识,本文将对信号放大器的功能、信号放大器常见问题予以介绍。
正如我们许多人所知,集成电路或IC是许多小电路在一个小封装中的组合,它们一起执行命令任务。像运算放大器或555定时器IC是由许多晶体管、触发器、逻辑门和其他组合数字电路组合而成的。类似地,触发器可以通过使用逻辑门的组合来构建,逻辑门本身可以通过使用几个晶体管来构建。
混频器是一种特殊类型的电子电路,它结合了两个信号(周期性重复的波形)。混频器在音频和射频系统中有很多用途,很少用作简单的模拟“计算机”。有两种类型的模拟音频混频器-加法混频器和乘法混频器。
我们中许多使用模拟电路的人在电路设计中经常遇到电压源和电流源这两个术语。虽然任何提供恒定电压的东西,如简单的5V USB输出或12V适配器都可以被认为是电压源,但术语电流源似乎始终是一个谜。许多电路,特别是涉及运算放大器或开关电路的电路,需要使用恒流源才能使设计工作。那么电流源是什么意思呢?它将如何工作,为什么需要它?
正如我们许多人所知,集成电路或IC是许多小电路在一个小封装中的组合,它们一起执行任务。像运算放大器或555定时器IC是由许多晶体管、触发器、逻辑门和其他组合数字电路组合而成的。类似地,触发器可以通过使用逻辑门的组合来构建,逻辑门本身可以通过使用几个晶体管来构建。
保护电路对于任何电子设计的成功至关重要。在我们之前的保护电路教程中,我们设计了许多基本的保护电路,可以适应您的电路,即过压保护,短路保护,反极性保护等。除了这个电路列表之外,在本文中,我们将学习如何使用运算放大器设计和构建一个简单的过流保护电路。
集成电路或IC是许多小电路在一个小封装中的组合,它们一起执行共同的任务。例如,运算放大器或555定时器IC是由许多晶体管、触发器、逻辑门和其他组合数字电路组合而成的。类似地,触发器可以通过使用逻辑门的组合来构建,而逻辑门本身可以通过使用几个晶体管来构建。
扬声器是沉重的负载,它们通常需要由外部电路提供的高电流来驱动。这是因为有时产生的声音输出,比如从麦克风或吉他的拾音器线圈,不产生大电流高幅度输出,因此,它不适合驱动扬声器。这就是为什么我们有一个叫做音频放大器的东西。有许多类别的放大器,我们以前已经建立了很多音频放大器电路,从小型10W放大器到重型100W功率放大器。我们也知道,有几种类型的放大器在电子,一些常见的名称,你可能会遇到的缓冲放大器,前置放大器和功率放大器。
这是我们讨论浪涌电流系列文章中的一篇。在之前的文章中,我们已经介绍了浪涌电流的基础知识和各种类型的浪涌保护电路。浪涌电流保护最常见的方法是使用NTC热敏电阻,因此在本文中,我们将讨论更多关于NTC热敏电阻以及如何在您的设计中使用NTC热敏电阻来防止浪涌电流。
在电压控制电流源电路中,顾名思义,输入端的少量电压将按比例控制输出负载的电流。这种类型的电路通常用于电子驱动电流控制器件,如BJT,可控硅等。我们知道,在BJT中,流过晶体管基极的电流控制着晶体管闭合的程度,这种基极电流可以由许多类型的电路提供,一种方法是使用这种电压控制电流源电路。你也可以检查恒流电路,它也可以用来驱动电流控制设备。
电压-频率转换器(VFC)是一种输出方波的振荡器,其频率与其输入电压成线性比例。输出方波可以直接馈送到微控制器的数字引脚,以精确测量直流输入电压,这意味着可以使用8051或任何其他没有内置ADC的微控制器测量输入电压。
电流源和电流汇是电子设计中使用的两个主要术语,这两个术语决定了有多少电流可以离开或进入终端。例如,典型8051单片机数字输出引脚的吸收电流和源电流分别为1.6mA和60uA。这意味着引脚在高电平时可以提供(源)高达60uA,在低电平时可以接收(接收器)高达1.6mA。在我们的电路设计过程中,我们有时必须建立我们自己的电流源和电流吸收电路。在上一篇教程中,我们使用普通运算放大器和MOSFET构建了一个电压控制的电流源电路,可用于向负载提供电流,但在某些情况下,我们需要电流吸收选项而不是源电流。
在设计电子电路时,有很多情况下电路需要不同值的电压和电流源。例如,在为运算放大器设置预设电压时,通常使用电位分压器电路来获得所需的电压值。但是如果我们需要一个特定的电流值呢?与分压器类似,还有一种电路叫做电流分压器,它可以用来将闭合电路中的总电流分成几个。因此,在本教程中,我们将学习如何使用电阻方法(仅使用电阻)构建一个简单的分流电路。请注意,也可以使用电感器来制作电流分压器,两者的工作原理是相同的。
使用窗口电压监控器可以防止欠压和过压的情况出现,从而更好地调节系统电源。稳定的系统电源可保护系统或负载,以防出现潜在故障,甚至使其免遭损坏。不同的窗口电压监控器架构提供容差、欠压和过压阈值设置以及输出配置选项,以便根据应用实现设计灵活性。本文旨在通过列举不同的架构示例,帮助工程师和系统设计人员确定适合其应用的窗口电压监控器。