在永远在线的体验世界中,驾驶员和乘客希望通过传统的无线电或人机界面 (HMI) 系统访问有关交通状况和潜在危险的实时信息。与此同时,司机和乘客希望不受干扰地使用 GPS、智能手机和平板电脑等联网设备。因此,重要的是这些设备不受电磁干扰 (EMI) 的影响,电磁干扰 (EMI) 在密闭空间内放置大量电气和电子系统时会发生这种情况。
在为工业和通信系统设计电源时,工程师面临着许多艰巨的挑战。典型的系统可以包括一个或多个现场可编程门阵列 (FPGA)、专用集成电路 (ASIC)、片上系统 (SoC)、网络和通信处理器或其他类型的处理器。每个处理器通常需要对多个电源轨(四个、10 个或更多)进行复杂的电源管理才能正常运行。处理器的核心电压轨通常需要 20A 或更多的电流。管理核心轨和所有辅助电压轨是一个巨大的挑战。此外,由于系统外形尺寸缩小,印刷电路板 (PCB) 空间受到限制,因此工程师必须使用高密度解决方案。
通用串行总线USB已经存在很长时间了;一开始,USB 有独占的主从主机。一次数据传输主要来自PC,二次传输是到手机、鼠标或键盘。然而,随着消费电子产品的发展,从智能手机到 USB 驱动器、从平板电脑到智能手机以及从相机到打印机的数据传输需求增加。
假设我们正在为内燃机应用(割草机、链锯或汽车)设计降压电源。对于此应用,我们知道我们需要满足 Comité International Spécial des Perturbations Radioélectriques (CISPR)(或联邦通信委员会 [FCC])电磁干扰 (EMI) 规范。有多种减轻 EMI 的方法,包括识别重要的 EMI 干扰源、找出任何耦合路径、仔细设计电路布局以减轻干扰,以及添加滤波器和缓冲器。这些步骤中的每一个都需要时间,并且在不反复试验的情况下很难完成。此外,我们需要专门的设备和环境来测试 EMI。但是对于我们的所有麻烦,除了通过 CISPR 规范之外还有其他好处。
PMBus(Power Management Bus,电源管理总线)是一种开放标准的数字电源管理协议。可通过定义传输和物理接口以及命令语言来促进与电源转换器或其他设备的通信。该协议是由一群认为由于没有合适的标准而抑制了全数字电源管理解决方案的发展的电源和半导体生产商共同建立的。
汽车系统旨在承受温度的广泛变化、极端输入瞬变和其他干扰。我们汽车中的几乎所有电子设备都经过严格的测试,需要满足汽车电子委员会 (AEC) 规定的质量系统标准和组件认证。大多数汽车系统由 12V 铅酸电池供电,我们可能知道,电池电压在我们可以想象的几乎所有条件下都会发生变化:环境温度、负载条件、年龄;这个清单不胜枚举。
我们生活在一个设计师似乎一直在追求更高效率的世界。我们希望以更少的功率输出更多的功率!更高的系统效率是团队的努力,包括(但不限于)性能更好的栅极驱动器、控制器和新的宽带隙技术。
Fly-Buck 是一种同步降压转换器,其电感器由变压器或耦合电感器或 代替。次级绕组经过二极管整流以产生隔离输出电压 (VOUT2),该电压通过变压器的匝数比与初级输出电压 (VOUT1) 相关。
大多数电源转换器实施的核心是效率和功率密度之间 不可避免的权衡。然而,具有独特电源解决方案要求的新应用正在形成。许多设计人员选择使用兼具性能和灵活性的降压控制器来利用经过验证和验证的电源解决方案。
在创建高性能测试和测量设备时,我们最不关心的是什么为电路板供电。可能难以置信,但电源会对位于电源下游的高精度逐次逼近寄存器 (SAR) 模数转换器 (ADC) 的性能产生巨大影响。
取代现有的电表(仍然使用几十年前开发的技术),智能电表使用安全连接网络自动和无线地将能源使用情况发送给公用事业公司。智能电表的核心是其开关模式电源 (SMPS),它使用适用于单相和三相智能电表的低成本反激式拓扑。
人们为了成为最好的人会做些什么,真是太神奇了。例如,运动员会不知疲倦地训练,只是为了将比赛时间缩短十分之几秒。学生花费数年时间学习以获得最高荣誉。组织花费数十年时间开发技术来解决曾经只出现在科幻小说中的问题。最后电源工程师致力于打造比以往任何转换器更高效、密度更高的转换器。
作为工程师,每当我们面临为步进电机、LED 和其他外围设备设计控制或电源电路的挑战时,我们都喜欢使系统适应特定的规则和条件。我们基本上测量了两次,但仅限于那组特定条件。事后的任何更改只会意味着额外的成本和评估时间,这对任何项目来说都是一个巨大的痛苦。
如何设计一个太阳能应用? 在能源日益短缺的今天,自然能的利用成了人们关注的焦点,在各种自然能中,无穷无尽的太阳能以其无处不在的优势倍受青睐。
工厂自动化和控制系统中 4-20mA 电流回路的简单性和稳健性非常出色。它们甚至为现场变送器供电,后者转换测量值并相应地将回路中的电流设置为 4-20mA,然后模拟输入模块测量电流。