UCC25600 高性能谐振模式控制器专为使用谐振拓扑的 DC-DC 应用而设计,尤其是 LLC 半桥谐振转换器。这种高度集成的控制器仅在一个 8 引脚封装中实现了频率调制控制和完整的系统功能。改用 UCC25600 将大大简化系统设计和布局,并缩短上市时间,而且价格低于竞争性 16 引脚器件产品。
BQ25175 是一款集成式 800mA 线性充电器,适用于 1 节锂离子和锂聚合物电池。该设备具有为电池充电的单个电源输出。系统负载可以与电池并联,只要平均系统负载不会阻止电池在安全定时器持续时间内完全充电。当系统负载与电池并联时,充电电流在系统和电池之间共享。
MP2855是一款双环路数字多相控制器,可为AMD SVI2 2.0平台内核供电。该器件可以配合 MPS 的 Intelli-Phase™ 产品,以最少的外部元器件实现多相电压调节器 (VR) 解决方案。MP2855可配置为轨1最多9相操作和轨2最多4相操作。
随着全球伺服器及资料中心用量持续成长,满足稳定高效的电源供应需求,已成为支援耗电量上升的必要条件。用电量快速增加的原因在于,目前需要越来越多的整合式中央处理器、图形处理器及加速器,以提升伺服器和资料中心的计算速度。提升应用效益的做法推动了电源单位(PSU) 演进发展,提供高功率效率、快速暂态响应、高功率密度及更大的电源容量。
现代降压转换器的多功能让工作能够轻易地被完成,而且就像某位高谭市民的「万能腰带」一样,这些功能的配置与布局在设计时也考虑了其空间与灵活性。不管你有没有像蝙蝠侠一样的酷炫披风,只要能快速启动这些功能,就能不费九牛二虎之力,轻松解决设计上的挑战。
机器人、液位检测、人数统计、自动门/闸和交通监控等应用多年来一直使用无源红外 (PIR) 传感器和激光来执行物体的遥感和距离测量。然而,随着对精度的要求越来越高,以及针对照明不足、恶劣天气条件和极端温度等环境影响的高耐用性和恢复力的需求增加,向毫米波 (mmWave) 雷达技术的转变预计会走得更远。
芯片 ICL7673 是一款单片 CMOS 电池备用电路,与传统的备用电源切换方法相比,具有独特的性能优势。ICL7673 旨在作为在两个电源之间切换系统的低成本解决方案;主电池和备用电池。主要应用是在易失性 CMOS RAM 存储器系统和实时时钟中使用的保活电池电源开关。在许多应用中,该电路将代表电源和负载之间的低插入电压损耗。该电路具有低电流消耗、宽工作电压范围和极低的输入间泄漏。提供的逻辑输出可用于指示连接了哪个电源,也可用于通过驱动外部 PNP 晶体管来增加电路的电源开关能力。
当我们选择特定的电源设备后,可以构建印刷电路板 (PCB) 并在实验室中对其进行评估。我们测量一些基本参数,例如效率和开关频率,并将其与器件的数据表规格进行比较。虽然许多工程师都明白为什么他们的电路(具有不同的组件、设置和工作条件)无法获得数据表中显示的峰值效率,但开关频率的差异需要进一步调查。毕竟,开关频率不应该由设备固定,与我们的特定电路无关吗?
电流源的内阻相对负载阻抗很大,负载阻抗波动不会改变电流大小。在电流源回路中串联电阻无意义,因为它不会改变负载的电流,也不会改变负载上的电压。在原理图上这类电阻应简化掉。负载阻抗只有并联在电流源上才有意义,与内阻是分流关系。
如今,设计人员要求缩小整体尺寸——以节省电路板空间、增加功能并为最终用户应用分配更多空间——所有这些都需要更少的空间分配给电源管理,这不仅需要 XY 缩小,还需要 3-D体积收缩。在可穿戴产品中,半导体行业最近看到系统级封装 (SiP) 技术的使用有所增加,这些用户需要更简单、更灵活的设计,但又需要满足具有挑战性的空间要求。我希望看到这种趋势继续下去。
Sitara TM AM57x 系列处理器被用于许多工业和消费类嵌入式应用。处理器选好后,人们往往会转而看电源方案。对于 Sitara AM57x 处理器,建议使用集成电源管理 IC TPS659037。
在过去十年中,智慧型手表等穿戴式技术的制造商,成功地实现让用户能够即时追踪个人的健康状况。而现在可以运用大量的统计数据,例如步数、心率、血氧饱和度、健身持续时间等,以各种方式来追踪进度以达成健身目标。
一位汽车设计工程师最近向我们的团队提出了一个问题:在他们设计的固定频率降压稳压器的传导 EMI 测量期间,他无法满足国际无线电干扰特别委员会 (CISPR) 25 5 类电磁干扰 (EMI) 标准。让我简要回顾一下前面提到的一些 EMI 术语: · EMI 是信号从一个电路到另一个电路或系统的不希望的耦合。由于剧烈的电压转换、二极管反向恢复电流和无源寄生元件的振荡,EMI 与任何开关模式电源 (SMPS) 相关。
电容储能 是指利用电容器的储存电能的技术。 电容储能的机理为双电层电容以及法拉第电容,其主要形式为超级电容储能,超级电容储能装置主要由超级电容组和双向DC/DC变换器以及相应的控制电路组成。其技术核心在于超级电容器组内部的均压拓扑和控制策略以及双向DC/DC变换器的拓扑结构与控制策略。 电容储能已经广泛应用于电动汽车,风光发电储能,电力系统中电能质量调节,脉冲电源等。
精度和可靠性是电机控制和高精度医疗设备等工业和消费类嵌入式应用的首要任务。在这些类型的系统中,任何故障都可能对系统造成致命影响,并可能导致公司损失数百万美元。最常见的故障点是系统上的电源设备,最常见的故障原因是过热、不受监控的电源轨。