转换器稳定性是任何同步降压转换器设计的主要要求。确认转换器稳定性需要我们导出小信号传递函数并测量闭环系统的波特图。可以使用复杂的数学方程严格推导出小信号传递函数;就理解稳定性要求的性质而言,结果可能非常有见地。但是,推导小信号传递函数超出了本文的范围。
随着智能手机变得越来越智能、体积越来越大,电池容量也在不断增加。能够快速为电池充电是供电时要考虑的一个关键方面。USB PD:USB Power Delivery功率传输协议,USB功率2013年的新标准名为USBPD,USB PD 协议基于USB3.1,是USB3.1 中即type-c端口后提出的功率传输概念。可以为这种技术带来更大的灵活性,将充电能力扩大为10倍,最高可达100瓦。
虽然适当的大电流功率级布局在 DC/DC 应用中始终很重要,但在印刷电路板 (PCB) 布局期间注意稳压器信号路由比以往任何时候都更加重要。
PFC的英文全称为“Power Factor CorrecTIon”,意思是“功率因数校正”,功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。 基本上功率因数可以衡量电力被有效利用的程度,当功率因数值越大,代表其电力利用率越高。
世界是一个嘈杂的地方——电源也不例外。为了追求更高的效率,电源转换器以越来越快的速度切换会产生意想不到的问题,包括增加系统对瞬变和噪声的敏感性。在选择如何设计电源以及使用哪些组件进行设计时,考虑这种敏感性非常重要。
在本系列的第一部分中,我说过开关电源 (SMPS) 不稳定的原因有很多,其中只有一个是控制环路的增益或相位裕度不足。在篇文章中,我将提供一些有关识别和解决峰值电流模式 (PCM) 控制的 SMPS 系统中的次谐波振荡的技巧,并简要讨论输入滤波器振荡。
开关电源(Switching Mode Power Supply),又称交换式电源、开关变换器,是一种高频化电能转换装置。其功能是将一个位准的电压,透过不同形式的架构转换为用户端所需求的电压或电流。
目前的项目,对电流的需求显着增加,但整体解决方案尺寸还要求继续缩小。为了适应,我们可以减小降压转换器的尺寸,但它仍然必须能够处理电子系统中不断增加的功耗。优化布局以提高降压转换器的效率将减少为系统供电所需的电力。
低压差 (LDO) 稳压器的本质是通过将多余的功率转化为热量来调节电压,使该集成电路成为低功率或小 V IN至 V OUT差分应用的理想解决方案。考虑到这一点,选择合适的 LDO 和合适的封装对于最大限度地提高应用程序的性能至关重要。这是一些设计师做噩梦的地方,因为最小的可用封装并不总是适合所需的应用程序。
越来越多的无人机应用需要高单元数的电池组来支持更长的飞行距离和飞行时间。例如,考虑工作电压为 50V 至 60V 的 14 节串联锂离子 (Li-ion) 电池组架构。在为此类系统设计 DC/DC 电源时,挑战之一是如何选择最大输入电压额定值。一些工程师在图 1 中指定为 V M的节点看到过大的电压偏移,但可能不知道它的起源或如何处理它。
当我们插入智能手机充电时,我们希望它尽可能快速、安全地充电。
半导体设备的认证测试有许多不同类型和风格:电磁干扰和兼容性、静电放电、瞬态脉冲、抗振性、湿度和温度应力——不胜枚举。这些认证测试旨在进行真实且可重复的实验室实验,代表被测设备的应用环境。有些测试是独立的,有些是整个套件的一部分;无论哪种方式,在您的设备进入市场之前,都需要通过大量的测试。
当我们测试来自新设计的摄像头模块的视频输入时,我们是否注意到视频中出现缓慢移动的条、变色或闪烁,或者根本没有视频?
在本系列的前几期中,我重点介绍了规格、传输比和基本额定功率,以及降压、升压和降压-升压拓扑。在本期中,我将介绍单端初级电感转换器 (SEPIC) 和 Zeta 转换器。在高达 25W 的功率范围内,这两种拓扑结构都可以成为降压-升压转换器的经济高效的替代方案。
在本文系列的第二部分中,我讨论了如何从我们的电源规格参数中选择最适合的拓扑。在第三部分中,我将详细介绍降压、升压和降压-升压拓扑的不同方面。