PWM有着非常广泛的应用,比如直流电机的无极调速,开关电源、逆变器等等,个人认为,要充分理解或掌握模拟电路、且有所突破,很有必要吃透这三个知识点。
电源类PCB通常电流都比较大,电压呢也非常的高,通常我们在处理高压的PCB的时候都不会铺铜,因为如果存在高压就必须要考虑的一点就是爬电间距,高压与低压之间的爬电间距太小的话会有安全隐患。
高频组件(如射频放大器、射频滤波器等)应尽可能靠近射频天线或射频输入/输出端口,以减少信号损失并优化性能。
构造和材料:普通二极管是由P型半导体和N型半导体材料构成的,而肖特基二极管是由金属和N型半导体材料构成的。
我们在肖特基二极管设计过程中,肖特基二极管与普通二极管有什么区别,有哪些参数与特点我们需要留意。本文分享那些电感容易忽略关键参数。
功率二极管肖特基二极管的区别是什么?功率二极管和肖特基二极管是两种常见的半导体器件,它们都具有二极管的特性。
逆变器、转换器、SMPS 电路和速度控制器......在所有这些电路中常见的一件事是它内部包含许多电子开关。这些开关不过是 MOSFET、IGBT、TRIAC等电力电子设备。
射频识别,RFID(Radio Frequency Identification)技术,又称无线射频识别,是一种通信技术,可通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或光学接触。
电子电路中的电源一般是低压直流电,先把220v交流电变换成低压直流电,再用整流电路变成脉动的直流电,最后用滤波电路滤除掉脉动直流中的交流成分后才能得到直流电。
我们在高速PCB设计是为什么需要控阻抗呢,哪些信号需要控阻抗以及不控阻抗对我们的电路有什么影响呢?
高速电路无疑是PCB设计中要求非常严苛的一部分,因为高速信号很容易被干扰,导致信号质量下降,所以在PCB设计的过程中就需要避免或降低这种情况的发生。
几乎市面上所有的嵌入式系统都会用到多路输出电源,包括常见的多路输出线性电源和多路输出开关电源。
抑制电磁干扰采用的技术主要包括滤波技术、布局与布线技术、屏蔽技术、接地技术、密封技术等。
低频来自两部分:差模和共模滤波。差模滤波试图减少电流返回回线的电源线上噪声。这意味着电源线上噪声存在在外壳和回线上。
在电路板设计中,噪声问题是每位设计师都会遇到的一大问题。为了解决噪声问题,一般需要花费数小时时间来进行实验室测试才能揪出真正的元凶。