PCB(印刷电路板)翘曲是电子制造业中一个常见且棘手的问题,它会对产品的可靠性和使用寿命产生显著影响。以下是对这些影响的详细分析:
在 第一部分 和 第二部分中 在这个系列中,我们研究了互调--它是什么,以及如何将它应用于频率转换任务。我们在第二部分结束的时候 图1 .我们从一个1200KZ的载波器开始,它有两个副峰,在u-50KZ抵消点(显示为斑点蓝色痕迹)。然后,我们将这种调幅载波与900-KZ正弦波混合,并对结果进行了分析。我们在图1中看到,我们已经消除了我们原来的信号,用两个版本替换它,向上和向下转换为900千赫(红色跟踪)。我们注意到这些转换保存了u50-KZ偏移的侧方柱。
第一部分 该系列描述了通过非线性设备(如混合器)将两个或多个正弦信号组合而产生的相互调制。 图1 .混合器的输出是它的两个输入的结果,它的输出的频率含量是 f 1 + f 2 和 f 1 – f 2 .频率 f 1 和 f 2 不要出现在输出中(除非它是 f 1 = f 2 ,在这种情况下,输出包含 f 1 = f 2 加上直流元件)。
根据 字典定义 ,互调是"电流装置中产生的频率等于提供给该装置的频率的总和和差异。"在电气工程学的文献中,"变形"一词后面常常是"变形"一词。实际上,互调失真(IMD)是一个很糟糕的问题,需要消除。然而,导致IMD的过程通常在通信和测试应用程序中得到很好的利用。
首先,注意热电偶电压之间的关系 V 以及温度 T 是用塞贝克系数定义的 S ,在哪里? V /d T .从表1中你可以估计 S 对T型热电偶来说,大约等于14.862mV/300k,或49.54mM/K。不过, S 它本身是温度的函数,所以T型热电偶的电压温度曲线 图2 这并不是线性的,我们不能简单地以这种方式增加温度。
热电偶 一直被用来测量温度。它们是简单的,由一对不一样的金属导线在一端焊接在一起。他们是坚固的,在广泛的温度范围内工作,产生容易测量的电压,不需要外部激励。
在设计无线设备时,要注意在电路板上放置天线。电路板上的空间、位置、间隙、地面以及与其他部件的正确连接都影响到天线的性能。从最初的设计概念中纠正这些方面,将有助于实现一个成功的发射和可靠的无线性能。
本文首先对运算放大器和比较器的操作进行了最高层的比较,然后研究了运算放大器的分类,包括电压、电流、跨电导和跨电阻设计,查看了运算放大器的电压拓扑,考虑了诸如数字比较器、频率比较器、电流比较器和窗口比较器等各种类型的比较器,并通过考虑如何使用运算放大器作为比较器来关闭。
缓冲器和驱动器同时提供输入和输出之间的阻抗变换。当看到常见类型的缓冲器和驱动器,例如电压和电流缓冲器、时钟缓冲器、直线驱动器和门驱动器时,这些差异开始出现。基本缓冲区和驱动程序有一个输入和一个输出,但还有一些可以有一个输入和多个输出或一个输出有多个输入。
在 第一部分中 在这个系列中,我们讨论了1-db压缩点作为设备线性度的一个优点。在 第2部分里面 ,我们检查了一个增加两个频率的基本输入信号的电路。 f 1 = 2 GHz and f 2 =2.5千兆赫。由于非线性,电路产生干扰,主要形式为低面和高面三阶互相调制产品2 f 1 – f 2 和2 f 2 – f 1 , respectively ( 图1)。三阶拦截点,简称IP3或toi,表示设备如何很好地限制这种干扰。
在 第一部分中 ,我们研究了1db压缩点,它是射频功率放大器等设备的优点。一个附加的规范,三阶截取点,简称IP3或TEI,特别适用于具有多个输入频率的电路。例如,假设放大器和两个频率为 f 1 = 2 GHz and f 2 =2.5千兆赫。由于非线性,该电路产生具有各种干扰频率的输出频谱,如 图1 .在一个 先前关于互调失真的帖子 ,我们注意到低及高侧三阶互调产品2 f 1 – f 2 和2 f 2 – f 1 因为它们接近基本面,难以过滤,所以可能会特别麻烦。选择一个具有高IP3评级的放大器或其他设备可以最小化这些产品的水平。
A: 你会发现几个。首先,在 图1 "蓝线"代表电路的理想线性响应,而"红线"则代表被测量的响应。我们可以绘制平行于约束实际响应的线性响应的线(图中的虚线),然后计算非线性作为一个函数的全面输出。在这个夸张的表示中,非线性度为+10%.对于在线性区域中工作的高质量的OP放大器,非线性度不是以百分比为单位的,而是以百万分之一(PPM)为单位的。
无线电通信系统稳步提高数据速率和总体系统性能。随着性能的提高,对电力消耗的压力越来越大。最近的一份行业报告[参考1]得出结论,典型的5G基站的耗电量为12千瓦,而LTE基站的耗电量为7千瓦。大约有5个烤面包机的额外能量被使用。(典型的2片烤面包机消耗约1000瓦。)
在这一系列中,我们回顾了在微软的EXECL中实现的快速傅立叶变换(FFT),并研究了窗口功能。在最后一部分,我们将讨论相位测量,但首先,让我们回顾一下 第三部分 ,我们通过研究窗口不起作用的信号得出结论。
我们得出结论 第2部分 本系列中的一个,以我们的样本大小,查看39.1-赫兹和38.12-赫兹余弦波的快速傅立叶变换(FFSTS)。 N =512及样本间隔 新一代 = 1 ms ( 图1 ).